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Thejaswini. Published at SOSA 2024.

Chapter 11 contains results from this work.

Results presented in this thesis in Chapter 6 and 7, not enumerated above, have

been obtained under the supervision of Marcin Jurdziński and are being prepared

for submission.

The following research was carried out in collaboration during the develop-

ment of this thesis and have been published in conferences but does not form part

of the thesis.

[BT21] Adaptive Synchronisation of Pushdown Automata. A. R. Balasubramanian

and K. S. Thejaswini. CONCUR 2021.

[PT23] On History-Deterministic One-Counter Nets. Aditya Prakash and K. S. The-

jaswini. FoSSaCS 2023.

[STSN24] Solving Two-Player Games Under Progress Assumptions. Anne-Kathrin Schmuck,

K. S. Thejaswini, Irmak Saglam, and Satya Prakash Nayak. VMCAI 2024.

This work has not been submitted for any other degree or professional qual-

ification.

viii



Abstract

In this thesis, we consider the computational problem of deciding the winner
in two player games on finite graphs with parity and Rabin objectives. Solving
these games is a fundamental problem with applications to program verification,
and synthesis, and it is closely linked to problems in automata theory and logic.
We focus on understanding the structural properties of these games and devising
algorithms that harness these properties.

At the core of this thesis is the concept of an attractor decomposition, a
structured representation of a parity game that serves as a witness of winning for
a player and that naturally corresponds to a tree. It has been established that
universal trees—trees capable of embedding all possible trees emerging from an
input parity game—play a pivotal role in serving as a search space for all known
algorithms designed to solve parity games.

We define the Strahler number of a parity game as the smallest Strahler
number of the tree of its attractor decomposition, and we establish that it functions
as a robust and intuitive parameter. This concept propels us to construct succinct
Strahler universal trees, enabling polynomial-time solutions for a wider range of
parameter settings in parity games.

Through a relaxation of attractor decompositions that we call “decomposi-
tions,” we formulate three novel algorithms for solving parity games. Our algorithms
either boast a simpler description or faster runtime complexity in comparison to their
predecessors, and they are designed to be easily adaptable to various universal trees,
including our Strahler universal trees.

Finally, we extend the concept of attractor decompositions to “colourful de-
compositions,” identified as witnesses of winning for Rabin games. The colourful
trees that stem from colourful decompositions lead us to construct succinct colour-
ful universal trees. This construction yields an algorithm which is an exponential
improvement in space complexity and an exponential factor improvement in time
complexity compared to other state-of-the-art algorithms.
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Chapter 1

Introduction

Parity games. Parity games are two-player games played between Steven and

Audrey on directed graphs, in which the ownership of these vertices is divided

between the two players. The graphs on which these games are played are equipped

with a natural number assigned to each vertex, called its priority. A token is placed

at a designated start vertex. At each step, the owner of the vertex on which the

token is currently placed chooses an outgoing edge. The token is then moved along

the edge to the next vertex. The game proceeds for an infinite duration, creating

a play : a countably infinite sequence of vertices seen by the token. Steven wins in

a parity game if he can ensure, by choosing his edges appropriately, that for any

play in the game, the highest priority visited infinitely often is even. Audrey wins

otherwise.

Rabin games. Rabin games, like parity games, are also two-player games played

on directed graphs, where each vertex is owned by one of Steven or Audrey. Each

Rabin game has a finite set of colours. From this set of colours, for each vertex of

the graph, a subset of the set of colours is assigned as its good colours and a subset

of the set of colours is assigned as its bad colours. A token is placed on a designated

start vertex, and the game proceeds similarly to that of a parity game, where the

token is moved by the players along the edges, forming a play. Steven wins in a

Rabin game if he can ensure that amongst the vertices that are visited infinitely

often in a play, there is some colour that is a good colour for at least one vertex and

is not a bad colour for any of these vertices.

1



1.1 The landscape

Parity and Rabin games have been studied since the late 1980s and they are ar-

guably a fundamental model in automata theory and logic [EJ88, EJ91, Zie98,

GTW02, BW18]. Applications of algorithms that solve such games include veri-

fication, program analysis, and synthesis. In particular, they are intimately linked

to the problems of emptiness and complementation of non-deterministic automata

on trees [EJ91, Zie98], model checking and satisfiability of fixpoint logics [EJS93,

BW18], fair simulation relations [EWS01] and evaluation of nested fixpoint expres-

sions [LBC
+

94, BKMMP19, HS19]. Furthermore, Rabin conditions are suitable

specifications for general fairness constraints [FK84] or to prove program termina-

tion under such constraints [KK91].

Automata and Logic. Automata, logic and games are inherently tied together

with threads of expressivity and decidability results. The emptiness of tree automata

or alternating automata with a parity or Rabin condition can be decided by solving

parity or Rabin games derived directly from such automata. Moreover, the most

effective translations from alternating parity or Rabin automata on infinite words

to alternating weak automata have been inspired by algorithms for parity or Rabin

games, respectively [KV98, BL19, DJL19].

The close connection between logic and automata has been explored since

the 1960s [Bü62, Rab69]. We focus mainly on the modal µ-calculus here to high-

light the connection of automata and games to logic. The modal µ-calculus has

gained traction in the community since its introduction by Kozen [Koz83]. In terms

of expressivity, this logic subsumes well-studied logics such as LTL [Pnu77] and

CTL [CE81] (which are incomparable to each other in terms of their expressivity).

It also subsumes the logic CTL
∗

[EH86], which already subsumes both LTL and

CTL.

Rabin showed that the Monadic Second Order logic (MSO) with n suc-

cessors (SnS) is equi-expressive as Rabin tree automata [Rab69]. The result of

Niwiński [Niw88, Niw97], followed by the work of Emerson and Jutla [EJ91], showed

a tight (effectively translatable) equivalence in expressivity between the modal µ-

calculus and parity tree automata.

Decision problems over the modal µ-calculus reduce to problems in automata

theory and game theory [Str81, EJ91, MS95]. More specifically, the problem of

checking if a Kripke structure is accepted by a given µ-calculus formula, also known

as the model checking problem of modal µ-calculus, directly reduces to acceptance

of a word by an alternating parity automata or, equivalently, deciding the winner

2



of a parity game [EJ91]. The problem of checking if a formula is satisfiable also

reduces to the emptiness checking of non-deterministic Rabin automata on trees,

or solving a parity or Rabin games thus obtained, but these reductions are rooted

in fundamental results in automata theory [EJ91, Saf88, MS95]. This satisfiability

problem is decidable and is also known to be EXPTIME-complete [SE89, EJ99].

For a more thorough view on modal µ-calculus and its relation to automata

theory and games, we refer to the survey by Wilke [Wil01], and also a more recent

survey by Hausmann and Piterman [HP22].

Model checking and Synthesis. The game-theoretic approach to system ver-

ification uses the theory of two player games on graphs to tackle verification and

synthesis of systems, studied since the 1980s [CE81, QS83]. We give a brief overview

on the interplay between the two player games we study and the areas of model

checking and synthesis.

Model Checking. The model checking problem asks if one can construct

machines that can, given a model and a specification, verify if the executions of

this model satisfy the given specification. These specifications are usually expressed

using temporal logical formulas. For our purposes, we limit our discussion to the

model checking problem of modal µ-calculus, which asks if a given Kripke struc-

ture (labelled transition system) satisfies the properties expressed by a µ-calculus

formula. As elaborated upon in our brief discussion on logic and games, the model

checking problem reduces to the problem of solving parity games [EJ91]. Emerson,

Jutla, and Sistla further showed that the model checking problem can be reduced to

the non-emptiness problem of parity tree automata [EJS93]. It is also known that

the model checking problem reduces to solving a system of nested-fixpoint equa-

tions [LBC
+

94, Sei96, BW18]. The observation that model checking of modal µ-

calculus can be done symbolically [McM93] is key to several industrial-scale model

checkers [Wil01].

Synthesis. Posed by Church [Chu57] in the late 50s, the problem of syn-

thesis asks if a reactive system can be automatically constructed from a logical

specification. Due to the underlying connections between logic and games, the syn-

thesis problem for several logics reduces to solving two-player games [BL69]. The

synthesis problem, when the specification is given in LTL, is solved by converting

such specifications into two-player games where the objective is assessed using a non-

deterministic Büchi automaton over infinite words. These Büchi automata must be

3



determinised either to parity automata or Rabin automata [McN66, Saf88, MS95].

The solution to parity or Rabin games thus obtained effectively synthesises a con-

troller.

The tree-automata based approach to synthesis was championed by Pneuli

and Rosner [PR89] who showed 2-EXPTIME-completeness for LTL synthesis. De-

spite its discouraging complexity status, the problem of LTL synthesis is, in com-

parison, significantly more tractable than S1S synthesis (Monadic Second Order

logic with one successor), which is non-elementary [Sto74]. We remark that the

doubly exponential algorithm of Pneuli and Rosner was obtained by solving Rabin

games. Fragments of LTL have also been considered while solving the synthesis

problem, such as GR(1) (Generalised Reactivity (1)) proposed by Piterman, Pnueli,

and Sa’ar [PPS06] for which the time taken by the synthesis problem is bounded by

a single exponent.

Bloem, Chatterjee, and Jobstmann [BCJ18] provide a thorough overview of

reactive synthesis where we redirect the curious reader.

Complexity status. The problem of deciding the winner of a parity game is

in NP ∩ coNP. It was also shown to be in the complexity class UP ∩ coUP by

Jurdziński [Jur98]. The search version of the problem of finding strategies in a parity

game for both players is in CLS [DP11], and therefore also in the complexity classes

PPAD and PLS which contain CLS (see work of Fearnley et al. [FGHS21], for recent

breakthrough result showing PPAD∩PLS = CLS). Rabin games, on the other hand,

have been established to be NP complete in the work of Emerson and Jutla [EJ88].

The recent breakthrough of Calude, Jain, Khoussainov, Li, and Stephan [CJK
+

22]

showed that both parity and Rabin games are in FPT (fixed parameter tractable) for

the parameter being the number of priorities or the number of colours, respectively.

However, it has been open for over three decades whether solving parity games is in

P.

Algorithmic efforts. For parity games and Rabin games, we use n to refer to

the number of vertices and m the number of edges of the underlying graph on which

these games are played. We use d to denote the number of distinct priorities in a

parity game and k to denote the number of colours in a Rabin game.

Parity games. In their seminal work, Emerson and Jutla [EJ91] demon-

strated the existence of positional winning strategies for both players in parity games.

McNaughton [McN93], drawing inspiration from the contributions of Gurevich and

4



Harrington [GH82], as well as Yakhnis and Yakhnis [YY90], presented a recur-

sive algorithm in his work to tackle a more general class of games, called Muller

games. Building upon this foundation, Zielonka adapted McNaughton’s algorithm,

not only presenting an alternative proof of existence of positional winning strategies

but also producing an algorithm with a running time of O((n
d
)d) to solve parity

games. An exponential space and O((n
d
)d/2) time algorithm was given by Long,

Browne, Clarke, Jha, and Marrero [LBC
+

94] and later simplified by Seidl [Sei96]

to solve model checking of modal µ-calclus—also known to be equivalent to solv-

ing parity games. Soon after, Jurdziński [Jur00] gave a small progress measure

algorithm, which assigns a measure to the underlying game graph such that this

measure is non-increasing along an edge in a play. This algorithm took time propor-

tional to O((n
d
)d/2), reducing the runtime by half in the exponent when compared

to the McNaughton-Zielonka algorithm while maintaining closely its space com-

plexity. Subsequently, Jurdziński, Paterson, and Zwick, using pre-processing that

removed winning sets of fixed sizes, brought down the running time of the modified

McNaughton-Zielonka algorithm to n
O(

√
n/ logn)

[JPZ08]. Theirs was the first deter-

ministic sub-exponential algorithm to match the expected runtime of the randomised

algorithm to solve parity games by Björklund, Sandberg and Vorobyov [BSV03]. In-

spired by this, Schewe [SF07, Sch17] gave an algorithm with the running time in

O(( n
d2
)d/3+0.5). For values of n and d where d ∈ O(

√
n/ log n), this algorithm out-

performed the sub-exponential algorithm of Jurdziński, Paterson and Zwick, but

theirs remained the state of the art for cases where d was asymptotically compara-

ble to n.

Quasi-polynomial algorithms. A major breakthrough for algorithms to

solve parity games came recently in 2017 when Calude, Jain, Khoussainov, Li and

Stephan [CJK
+

17, CJK
+

22] provided a quasi-polynomial solution, along with a

O(nlog d+6) upper bound of its running time. An algorithm is said to take quasi-

polynomial running time if there is some constant c such that the running time of

the algorithms is bounded by n
O(logc n)

. This spurred research in parity games, lead-

ing to several illuminating results [GI17, BC17]. Following the algorithm of Calude

et al., two independent algorithms emerged with significantly improved space com-

plexity and closely matching runtime complexity. Jurdziński and Lazić’s succinct

progress measure algorithm [JL17] reinterpreted Jurdziński’s small progress mea-

sure algorithm [Jur00] and encoded them succinctly. On the other hand, Fearnley,

Jain, de Keijzer, Schewe, and Stephan’s [FJdK
+

19] algorithm modified Calude et

5



al.’s algorithm to significantly reduce the space complexity. The running time of the

algorithm of Jurdziński and Lazic is O(max { 2
O(d log d)

,O(mn2.38) }) and it requires

only quasi-linear space. The one by Fearnley et al. is also comparable in its runtime

and space complexity. A closer modification resulted in a slight improvement was

further obtained by Dell’Erba and Schewe using a modification of progress measures

of Fearnley et al [DS22].

Subsequently, a pioneering new approach emerged in the form of Lehtinen’s

work, wherein she introduced a parameter, the “register number,” aimed at solv-

ing parity games in quasi-polynomial time [Leh18, LB20] and in polynomial time

when register number is bounded by a constant. However, the running time of the

algorithm is bounded by O(ndk
2

), where k is the register number of a parity game,

which does not exceed lg(n) + 1. Inspired by Bojańczyk and Czerwiński’s [BC17]

interpretation of the algortihm of Calude et al., Czerwiński, Daviaud, Fijalkow, Jur-

dziński, Lazić, and Parys [CDF
+

19] exhibited a combinatorial structure of universal

trees, provably underlying the techniques of Calude et al., of Jurdziński and Lazić,

and of Lehtinen. An (n, h)-universal tree is an ordered tree that can embed in it any

tree with at most n leaves and height h. Their results concluded that any algorithm

that constructs a safety automaton whose accepting words work as a (specific kind

of) separator, implicitly contains an (n, d/2)-universal tree. A separator is an au-

tomaton whose language separates the languages of words encoding plays that are

(decisively) won by either Steven or Audrey in a parity game with n vertices and

d priorities. Moreover, they showed that any (n, d/2)-universal tree must have size

at least quasi-polynomial, thus providing evidence that the techniques developed in

these papers may be insufficient for leading to further improvements in the complex-

ity of solving parity games. However, we remark that such a combinatorial structure

displayed underlying Lehtinen’s algorithm does not have the same flavour as the

other lower bound results. Indeed, her algorithm produces non-deterministic parity

automata as separating automata as opposed to a deterministic safety automata

of the others. The lower bound is obtained indirectly by arguing that the safety

automaton derived from a non-determinisitc parity automaton with some good-for-

separation properties has the lower bound induced by universal trees. Parys [Par20]

later explained that this was sufficient, since the separators produced by Lehtinen’s

algorithm are what he called suitable-for-parity-games separators. He also gave an

improved version of Lehtinen’s algorithm. However, in his quest to achieve this

improvement, he modified the definition of a register game to consider only posi-

tional strategies. Although his modified algorithm did have an improved running

time compared to Lehtinen’s algorithm, the state-space complexity still remained
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quasi-polynomial, as opposed to state-of-the-art algorithms.

Focus soon shifted towards attractor-based algorithms since these lower bound

techniques did not immediately seem applicable there. Attractors are the set of

vertices from which one player has a reachability strategy to visit a target set of

vertices. Algorithms that compute attractors include the McNaughton-Zielonka al-

gorithm, which uses computing attractors as a primitive operation to find winning

sets in the game. Parys [Par19] proposed an ingenious quasi-polynomial version

of McNaughton-Zielonka algorithm, but Lehtinen, Schewe, and Wojtczak [LSW19],

and Jurdziński and Morvan [JM20, JMT22] have again strongly linked all quasi-

polynomial variants of these attractor-based algorithm to universal trees.

The work on universal trees has inspired several different directions of re-

search. Motivated by the work of Czerwiński et al., an alternate formulation in terms

of universal graphs was proposed, originally by Colcombet and Fijalkow [CF19],

which has led to faster algorithms for mean-payoff games in the work of Colcombet,

Fijalkow, Gawrychowski, and Ohlmann [FGO20, CFGO22]. The universal graphs

perspective has also enabled a clear characterisation of the objectives for games on

infinite graphs that have positional strategies, as demonstrated by Ohlmann [Ohl22].

Using these universal graphs and universal trees, algorithms to solve nested fixpoints

have also evolved [HS19, ANP21]. In terms of automata theory, the most optimal

translation of alternating parity automata on infinite words to alternating weak

automata also uses the theory of universal trees [DJL19].

Rabin games. The problem of solving Rabin games was shown to be NP-

complete by Emerson and Jutla [EJ88, EJ99] in the late 80s. In the same paper,

Emerson and Jutla, and independently, Pnueli and Rosner [PR89], gave algorithms

whose running times are O((nk)3k) time, where n is the number of vertices of

the game graph and k the number of colours. Algorithms to solve Rabin games

have been tied intimately to algorithms that solve parity games. The arrival of the

McNaughton-Zielonka [McN93, Zie98] algorithm meant that the fastest way to solve

Rabin games was to convert them to a parity game using Latest Appearance Record

(LAR) techniques [GH82] and then to use algorithms that solved parity games. But

this changed within the decade when Kupferman and Vardi [KV98] reduced the

cubic dependence on n
k

to a quadratic one by showing that the non-emptiness

of a Rabin tree automaton can be established in time O(mn2kk!). Zielonka’s al-

gorithm works for more general conditions, which include Rabin conditions. His

algorithm for Rabin games, in fact, runs in comparable time to the algorithm of

Kupferman and Vardi. However, its running time was precisely established later by
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Jurdziński [Jur00] to be O(mn2k/(k/2)k). Much later, Horn [Hor05] gave a differ-

ent solution to solve Streett games (players’ objectives are the opposite of that in

Rabin games) with the same running time as Kupferman and Vardi’s algorithm.

Inspired by the (then) fastest algorithm for parity games—the small progress

measure algorithm by Jurdziński [Jur00]—Piterman and Pnueli [PP06] gave an

O(mnk+1kk!)-time, O(nk)-space algorithm to solve Rabin games, again improving

algorithms that solve Rabin games by a factor of n
k
.

The work of Piterman and Pnueli remained state-of-the-art for Rabin games

until the quasi-polynomial breakthrough for parity games by Calude, Jain, Khous-

sainov, Li, and Stephan [CJK
+

22]. The FPT algorithm of Calude et al. that solved

parity games also gave an FPT algorithm for Rabin games where the parameter

is the number of colours, as discussed briefly in their work. Converting a Rabin

game to a parity game that preserves the winner leads to an exponentially large

parity game with an increase in the number of vertices by a factor of k! [GH82].

Nonetheless, we can solve Rabin games with n vertices, m edges, and k colours

in time O(nmk!
2+o(1)) and O(nk!

1+o(1)) space, by solving this exponentially large

parity game obtained using state-of-the-art algorithms [JL17, FJdK
+

19]. This exact

running time stems from using results in the work of Jurdziński and Lazić, or Fearn-

ley et al., who reported a comprehensive analysis of the running time complexity of

their algorithm for parity games across various parameter settings. However, it is

important to note that the space requirements of all these FPT algorithms discussed

so far are exponential.

Practical efforts. With a range of algorithms available to solve parity games,

there have also been several implementations of these algorithms [BLV96, HKLN12,

dAF07, BDM18]. While most implementations were sequential, there are now

several multi-core implementations [vW08, vdB10, Fea17] designed to solve parity

games, which make better use of machines with large memories and many CPUs.

However, dissatisfaction with the availability of practical implementations

that match the theoretical advancements in solving parity games prompted Fried-

mann and Lange [FL09] to introduce a platform called PGSolver. This platform

implemented several algorithms, facilitating comparisons among them across various

families of parity games. In a bid to promote tools for addressing synthesis-related

problems, SYNTCOMP, a synthesis competition was inaugurated in 2018 [JPA
+

22].

Originally featuring three distinct tracks, each with specific synthesis specifica-

tions. Consequently, several tools emerged for solving parity games, including

STRIX developed by Meyer, Sickert and Luttenberger [MSL18, LMS18] and Oink
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by van Dijk [vD18, MSL18]. Notably, STRIX, which has consistently won the

main SYNTCOMP competition from 2018 to 2021, uses parity game solvers to aid

its LTL synthesis. Since 2021, there has been a dedicated track for parity game

solvers [JPA
+

22].

1.2 Our contributions at a glance

A roadmap. This thesis consists of three parts, each part further contains three

chapters.

Chapter 2 serves as a repository of definitions and algorithms, which we

invoke throughout this thesis.

In Part I, comprising of Chapters 3 to 5, we understand the structure of parity

games better in two ways. Initially, we tackle parity games that arise from nested

fixpoint equations (Chapter 3) and provide algorithms to solve such games. Later,

and more importantly, we define a fundamental parameter for parity games that we

call the Strahler number of a parity game (Chapter 4), pivotal for characterising

the games’ intrinsic structure. We further show a combinatorial construction of

Strahler universal trees which allow existing algorithms to solve parity games faster

for various settings of different parameters, where one such parameter is its Strahler

number (Chapter 5).

In Part II, which spans Chapters 6 to 8, we engineer three different algo-

rithms: a strategy iteration algorithm (Chapter 6), an asymmetric attractor-based

algorithm (Chapter 7) and a symmetric attractor-based algorithm (Chapter 8) to

solve parity games. These algorithms are easily parameterized to run on any uni-

versal trees—the fundamental combinatorial object underlying all known algorithms

that solve parity games.

Finally, in Part III, which includes Chapters 9 to 11, we give improved al-

gorithms to solve Rabin games (Chapter 9). We extend our algorithm to also solve

Rabin games with additional fairness constraints imposed on the opponent Audrey

(Chapter 10). We show an alternate proof that our algorithms for Rabin games

and their variations are optimal, conditional on the Exponential Time Hypothesis

(Chapter 11).

Subsequently in this chapter, we provide an intuitive overview of the attractor

decomposition in a parity game and the associated trees. Using this understanding,

we summarise the most important results of each chapter.
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What are attractor decompositions? A Steven dominion is a subset of ver-

tices of a parity game where Steven (has a strategy that) can ensure that all plays

(that use this strategy) remain within this subset of vertices and are simultaneously

winning for him. Every Steven dominion has a hierarchical subdivision of the set of

vertices that is a structured encoding of a winning strategy for him. We call such

subdivisions an attractor decomposition. Attractor decompositions are underlying

in the work of McNaughton and of Zielonka [McN93, Zie98], and their connection

to ordered trees has been made explicit in several works [DJL18, DJL19, JMT22].

Consider a parity game where the entire set of vertices is a Steven dominion

and the priorities are assigned from the set {1, 2}. We know that a winning strategy

of Steven must ensure that all plays visit the set of vertices of priority 2 infinitely

often. Thus, every time he is at a vertex of priority 1, Steven’s winning strategy

ensures that he visits a vertex of priority 2. Therefore, the vertices of the game can

be partitioned into two sets: vertices of priority 2 and vertices from which Steven

can visit these “high” priority vertices within finitely many steps.

If we allow the range of priorities to extend from the set {1, 2} to {1, 2, 3} whilst

still maintaining the condition that Steven is guaranteed to win from everywhere,

Steven’s strategies become more involved. Steven’s winning strategy would enable

him to partition the set of all vertices into “blocks,” where within each block, the

priority of the vertices is at most 2. Furthermore, in each block, he can employ

his earlier format for winning, which is a strategy that leads the play to the set of

vertices of priority 2 within that block. But such blocks can be arranged in order,

with vertices of priority 3 (or lower) interspersed between such {1, 2}-blocks. Outside

the {1, 2}-blocks, Steven’s strategy would be to enter any {1, 2}-block arranged to

the left. This way, Steven visits these vertices of priority 3 only in a transient fashion

between these blocks, thereby seeing vertices of priority 3 only finitely often.

Further extending the range of priorities to {1, 2, 3, 4} now alters the format of

Steven’s strategy as follows. If he can visit a vertex among the set of vertices of
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priority 4, he does that. If not, then again follows a strategy similar to when the

priorities were assigned from the set {1, 2, 3}. However, Steven can now visit these

vertices of priority 3 multiple times, but between two such visits to the same vertex

of priority 3, his strategy would ensure that he visits a priority 4. This strategy

enables the game to be partitioned into vertices that can reach a priority 4 vertex

in a finite number of steps, while the remaining part of the game consists of vertices

with priorities in the set {1, 2, 3}. This remaining part of the game, in turn, can

be subdivided, as discussed previously, with blocks of priority {1, 2} and blocks of

priority {1, 2, 3}, arranged linearly and alternating between the two.

This recursive decomposition can be extended to parity games of arbitrary

priorities by decomposing the game in a similar manner recursively. Since strategies

ensuring that Steven visits a fixed set of vertices are widely known as his attractor

strategies, such decompositions of the games are termed attractor decompositions.

These attractor decompositions are defined in a hierarchical manner and naturally

correspond to trees. For example, the tree arising from the attractor decomposition

represented above would be a tree of height one and with three leaves. If we had

priorities from the set {1, . . . , d}, then the associated tree would have height not

more than ⌊d/2⌋. The observation that some of these partitions need to be non-

empty, enforces that these trees have at most as many leaves as there are vertices

in the game.

For a tree T , a Steven dominion of a parity game is said to have a Steven

T -attractor decomposition if it has an attractor decomposition whose tree can be

embedded in T . A parity game has a Steven T -attractor decomposition if the set

of all vertices from which Steven can win—the largest Steven dominion—has a T -

attractor decomposition in the game. Since the tree of an attractor decomposition

of a parity game with n vertices and d distinct priorities would have no more than

n leaves and height d/2, such a parity game would therefore also have a T -attractor

decomposition where T is an (n, d/2)-universal tree—a tree that can embed all trees

with n leaves and height d/2.
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Part I

Part I’s first chapter is Chapter 3, where we propose an algorithm that extends what

was called the universal algorithm in the work of Jurdziński and Morvan [JM20].

We will refer to their algorithm as the Jurdziński-Morvan algorithm. We extend

their algorithm, which originally was to solve parity games, to also solve nested

fixpoint equations (thus making it even more universal!). We do so by using a

characterisation of nested fixpoint equations over complete lattices called fixpoint

games [BKMMP19, Ven08]. A system of nested fixpoint equations consists of d

fixpoint equations, for i in {1, . . . , d}, each of the form

Xi =ηi fi(X1, . . . , Xd),

where each ηi corresponds to the least or greatest fixpoint operator. A nested fix-

point equation can be converted to a nested fixpoint game, which is an exponentially

large parity game. For equations over a powerset lattice of an n element set and

with an alternation depth d in the system of equations, these parity games contain

O(nd2
nd) many vertices and d distinct priorities. The winning vertices of Steven in

a nested fixpoint game exactly identify the solution to the nested fixpoint equation

from which this game arose. We show that although these parity games have ex-

ponentially many vertices, attractor-based algorithms can be modified to also work

for nested fixpoint games, whilst keeping track of only polynomially many of the

vertices of the fixpoint game at any given point of the algorithm.

We identify specific kinds of subgames of the fixpoint game and call these

flowery subgames. We also show that attractors computed during the algorithm

result in (specific kinds of) flowery subgames, and these subgames can also be com-

plemented to result in flowery subgames within the algorithm. Moreover, flowery

subgames can be represented succinctly. Since flowery subgames are sufficient to

capture all subgames that arise during the computations in the Jurdziński-Morvan

algorithm, this gives us a natural way to tweak their symmetric attractor-based al-

gorithm to solve nested fixpoint equation over the powerset lattice. The Jurdziński-

Morvan algorithms’s recursive calls are dictated by two trees, and the correctness

is guaranteed when these are both (n, d/2)-universal trees. Similar guarantees hold

for the modified version that solves nested fixpoint games.

Theorem A. The modified Jurdziński-Morvan algorithm that computes nested fix-

point equations takes quasi-polynomial time and polynomial space, when the under-

lying trees are quasi-polynomial sized universal trees.

The rest of Part I is dedicated to our novel and arguably fundamental pa-
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rameter of parity games, which we call the Strahler number. The Strahler number

of a rooted tree is the largest height of a perfect binary tree that is its minor. We

define the Strahler number of a parity game as the smallest of the Strahler numbers

of the trees T , such that the game has a T -attractor decomposition.

Lehtinen’s algorithm has avoided a tree based characterisation as it did not

produce safety separating automata and instead produced parity separating au-

tomata. In her work, Lehtinen introduced the register number, a parameter of a

parity game. We show in Theorem B that the Lehtinen number (which differs by at

most 1 from the register number of a parity game) is exactly equal to the Strahler

number of a parity game. The easier direction of proving that the Strahler num-

ber (of progress measures) bounds the Lehtinen number appears in the author’s

master’s thesis [The19], and the question of whether these two values coincide was

left open there. Chapter 4 introduces our definition of the Strahler number of a

parity game. We demonstrate its connection to the Lehtinen number and provide a

technical proof by constructing an attractor decomposition that shows the Strahler

number is at most the register number.

Theorem B. The Strahler number of a parity game is equal to its Lehtinen number.

Recall that Lehtinen’s algorithm required quasi-polynomial space and the

runtime of her algorithm, although quasi-polynomial, did not match the state-of-

the-art algorithms such as the ones by Jurdziński and Lazić. The concerns about

the space requirements were also not resolved in the follow-up work of Parys [Par20].

We produce an algorithm which reduces the runtime of algorithms that solve parity

games of a fixed Lehtinen number—or equivalently, the Strahler number—to match

the state of the art. We define k-Strahler (n, h)-universal trees to be trees that

can embed any ordered tree with n leaves, height h, and Strahler number k. Any

(n, d)-small parity game whose Strahler number is at most k, can be solved by

modifying the progress measure algorithm of Jurdziński and Lazić to instead run

on Strahler universal trees. We construct optimal k-Strahler (n, h)-universal trees

which ensures that the running time of our algorithm for solving parity games yields

a novel trade-off

k ⋅ lg(d/k) = O(log n)

between the two natural parameters that measure the structural complexity of a

parity game, which allows solving parity games in polynomial time. This includes

as special cases the asymptotic settings of those parameters covered by the re-

sults of Calude, Jain, Khoussainov, Li, and Stephan [CJK
+

22], of Jurdziński and

Lazić [JL17], and of Lehtinen and Boker [LB20], and it significantly extends the
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range of such settings, for example to d = 2
O(

√
logn)

and k = O(
√

log n).

Theorem C. There is an algorithm for solving parity games with n vertices, d

priorities, and of Strahler number k in quasi-linear space and time n
O(1) ⋅(d/2k)k =

n
k lg(d/k)/lgn+O(1)

, which is polynomial in n if k ⋅ lg(d/k) = O(log n).

Part II

Having constructed small Strahler universal trees, we engineer algorithms in Part II

to solve parity games that exploit the existence of these small trees.

We produce three different algorithms. A strategy iteration algorithm (Chap-

ter 6), an asymmetric algorithm that produces an attractor decomposition for one

player (Chapter 7), and finally, a symmetric algorithm that recursively solves games

for both players symmetrically and exploits the progress made in a recursive subcall

for one player to aid the other player (Chapter 8).

The underlying concept that is used for each of these algorithms is that

of a decomposition of a parity game. Decompositions are a relaxation of attractor

decompositions endowed with a partial order among them. Each of these algorithms

take time that is linear in the size of the tree and at most polynomial space. Plugging

in our succinct Strahler universal or the universal trees in the work of Jurdziński

and Lazić, we ensure that these algorithms are comparable to the state of the art.

Strategy iteration. Strategy improvement algorithms form a class of al-

gorithms used to solve two-player games with positional winning strategies [How60,

VJ00, Lut08, Sch08]. Usually, strategy improvement algorithms start from an arbi-

trary positional strategy for one player. These algorithms use an underlying valu-

ation that evaluates how good each strategy is. The strategies are then improved

based on this valuation until an optimal strategy is found. Although strategy im-

provement algorithms can take exponential time in theory [Fri09, Fea10], in practice,

they terminate very quickly. Koh and Loho [KL22] gave a new take on strategy im-

provement algorithms, which we refer to as strategy iteration algorithms. Their

valuation of each strategy was based on both a fixed strategy and a progress mea-

sure that is maintained throughout the algorithm. For progress measures based on

the universal trees of Jurdziński and Lazić and our Strahler universal trees, Koh and

Loho’s algorithm improves a strategy and computes the valuation of the strategy

by computing a new progress measure in polynomial time. Moreover, the number

of iterations required is linear in the size of the universal tree used, thereby giving

a quasi-polynomial strategy iteration algorithm. The algorithm that computes this
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improved progress measure is quite involved and uses regularity of the subtrees of

the constructed universal trees.

We propose a strategy iteration algorithm that uses both a strategy and

a decomposition to compute a valuation. We show that our algorithm based on

decompositions, instead of progress measures, is simpler and we give an improved

Õ(∣G∣d) upper bound on the time taken to perform each step of the strategy iteration

for a parity game G with d distinct priorities. This is in contrast to Koh and Loho’s

algorithm for which each iteration takes time up to Õ(∣G∣3) for quasi-polynomial

universal trees. Moreover, our algorithm extends naturally to any tree rather than

specifically constructed universal trees, and therefore terminates in time that is

linear in the size of any fixed tree.

Theorem D. For a parity game G with n vertices, d priorities, and a tree T of even

level d, each iteration of the strategy iteration algorithm (Algorithm 2 on page 91)

takes time Õ(∣G∣d). The valuation (of the decomposition and strategy maintained)

at each step is strictly improving. The algorithm terminates with a T -attractor

decomposition of G within n
2∣T ∣ iterations.

Asymmetric attractor-based algorithm. Algorithms that repeatedly

compute attractors such as McNaughton-Zielonka [McN93, Zie98] and its several

variants [BDM18, BDM
+

21] outperform numerous algorithms that boast better

theoretical complexities. We present an algorithm that iteratively calculates attrac-

tors, with its recursive calls being guided by a universal tree. However, it has two

sharp points of contrast to other attractor-based algorithms whose recursive calls

are guided by trees. Firstly, our algorithm is asymmetric and depends only on the

tree for one player, in contrast to other attractor-based algorithms (McNaughton-

Zielonka [McN93, Zie98], Jurdziński-Morvan [JMT22], or Lehtinen et al. [LPSW22]),

which work recursively based on trees for both players. Secondly, our algorithm takes

time only linear in the size of the tree it depends on, as opposed to the quadratic

dependence of the current symmetric algorithms on the same. This improvement is

achieved by using decompositions in our recursive attractor-based algorithm. The

decompositions are used to preserve the progress made in each recursive subcall,

thus leading to our algorithm, whose guarantees are stated below.

Theorem E. For a parity game G and a tree T , Algorithm 6 (on page 106)

takes time at most linear in the number of nodes in T and polynomial in the size

of the game G to produce the largest Steven dominion that has a Steven T -attractor

decomposition.
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Symmetric attractor-based algorithm. Although the previous algo-

rithm has running time comparable to state-of-the-art algorithms, it is an algorithm

that treats its players asymmetrically. This asymmetric treatment renders the algo-

rithm intractable for some easy families of games as the worst-case running times are

realised by the asymmetric algorithm on such families of games. For these examples,

symmetric algorithms would have solved the same family of games in polynomial

time. This motivates us to leverage the symmetric nature of the players in these

games to build a recursive, symmetric, attractor-based algorithm, which matches

the theoretical guarantees of the previous algorithm. We extend the techniques de-

veloped in Chapter 7 and show that even in recursive symmetric algorithms, the

progress made in recursive calls can be encoded in the form of a decomposition.

Our symmetric algorithm is described in a way that it shows that its recursive

calls are guided by trees similar to that of the other symmetric attractor-based algo-

rithms. Therefore, our algorithm can be seen as a way to enhance the algorithms of

Parys [Par19], the algorithm of Lehtinen, Schewe and Wojtczak [LSW19, LPSW22],

as well as the algorithm of Jurdziński and Morvan [JMT22] to closely match (up to

a polynomial factor) the running time of state-of-the-art algorithms [JL17, DJT20,

FJdK
+

19]. While the other symmetric attractor-based algorithms discard the progress

made in their preceding recursive calls, we instead utilise it by a robust encoding

of this progress in the form of a decomposition for both players, which in turn en-

ables subsequent recursive calls to be made on smaller games, thereby improving

our running times.

Theorem F. For a parity game G and two trees T Odd
and T Even

, the procedure

Univ-Even-Fast (resp. Univ-Odd-Fast) in Algorithm 9 (on page 140) takes time

n
O(1) ⋅O(max (∣T Odd∣, ∣T Even∣)) to identify a set of vertices that includes all Steven

dominia of G with a T Even
-attractor decomposition and does not intersect with any

Audrey dominia with a T Odd
-attractor decomposition.

For parity games with n vertices and d priorities, and two trees that are

(n, d/2)-universal, these algorithms correctly identify the winning regions of the

game G in time proportional to the size of an (n, d/2)-universal tree. In Chapter 8,

we demonstrate the effectiveness of our symmetric algorithm with the following

observation. Using exponentially large (n, d/2)-trees for both players, our sym-

metric algorithm solves several families of games in polynomial time whereas the

McNaughton-Zielonka algorithm takes exponential time. Since the McNaughton-

Zielonka algorithm’s recursive calls are governed by the same exponentially large

(n, d/2)-trees, we assert that our enhancement of the McNaughton and Zielonka

algorithm significantly improves runtime for these specific game families.
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Part III

Rabin games. We turn our attention to Rabin games. These games can en-

code parity games without a blow-up. However, deciding the winner in a Rabin

game is NP-complete. Recall that the quasi-polynomial breakthrough of Calude et

al. [CJK
+

22] and its several follow-ups [JL17, FJdK
+

19] gave algorithms to also

solve Rabin games in time O(mn2(k!)2+o(1)) but with an exponential space re-

quirement. We produce an algorithm that improves the dependence on k! from

k!
2+o(1)

—obtained by converting a Rabin game into a parity game—to a k!
1+o(1)

factor in the running time while simultaneously improving its exponential space re-

quirement to a polynomial one. Our main technical ingredient is a characterisation

of winning strategies for Rabin games using colourful decompositions, an extension

of attractor decompositions. Colourful decompositions have a recursive structure

that can be captured by colourful ordered trees—an extension of ordered trees. We

extend the concept of universality to such colourful trees and, using a combinatorial

construction inspired by the universal trees implicitly constructed in the work of Ju-

rdziński and Lazić, build succinct colourful universal trees. Our colourful universal

trees are generalisations of universal trees in the work of Jurdziński and Lazić [JL17]

to solve parity games, as well as pointer trees that appear in the work of Klarlund

and Kozen [KK91].

Theorem G. A winning strategy for Steven in a Rabin game with n vertices, m

edges, and k colours can found using O(nk log k log n) space and time

Õ (nm ⋅ k! min{n2
k
,(

⌈lg n⌉ + k
k − 1

)}) .

Fair Rabin games. We later consider a modified version of Rabin games,

called fair Rabin games. These games are played in arenas similar to Rabin games,

but Audrey must be fair with respect to some specified live edges and also ensure

that the Rabin condition is not satisfied. A play of Audrey is said to be fair if among

these specified live edges, any edge’s source being seen infinitely often also implies

that this edge is taken infinitely often. Although such conditions can be encoded as

a Rabin condition, this leads to an increase in the number of colours used to encode.

We give a characterisation of such games similar to that of colourful decompositions.

Steven has a winning strategy in a fair Rabin game if and only if he has a fair

colourful decomposition of the vertices. These fair colourful decompositions also

have the recursive structure of a colourful tree. Using our construction of colourful

universal trees, we also obtain an algorithm that solves fair Rabin games, whose
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running time is upper bounded by the same function that we gave for algorithms

that solve Rabin games. Since identifying if Steven wins almost surely in stochastic

Rabin games reduces (in log space) to finding a winner in a fair Rabin game, we

also obtain algorithms for it.

Theorem H. Finding the winner in a fair Rabin game can be determined in

O(nk log n log k) space and time

Õ (nm ⋅ k!(min{n2
k
,(` + kk − 1)})) .

Finally, in Chapter 11, we give an alternate proof of a lower bound result

for solving Rabin games. It was known from the work of Calude et al.[CJK
+

22],

that assuming the Exponential Time Hypothesis (ETH, the assumption that there

exists δ > 0 such that the 3SAT problem cannot be solved in time O(2δn)), Rabin

games cannot be solved by algorithms whose running time is bounded by 2
o(k log k) ⋅

n
O(1)

. Since our algorithm closely matches this bound, this result implies that our

algorithm to solve Rabin games cannot be improved under the ETH.

Our alternate proof of this lower bound stems from a reduction from the

problem called Permutation SAT. We show that specific kinds of instances of

Permutation SAT do not have a 2
o(k log k) ⋅ nO(1)

time algorithm (where k is the

number of variables and n is the number of clauses) under the ETH. Consequently,

we reduce such instances of Permutation SAT to a Rabin game. Our reduction,

we believe, is simpler, reminiscent of the NP-hardness reduction from Emerson and

Jutla [EJ99], and more importantly, highlights the insight of the k! factor in our

algorithm better than the existing lower bound proof of Calude et al. which uses

the problem of Dominating Set to prove the same.

Theorem I ([CJK
+

22]). Assuming the Exponential Time Hypothesis, there is

no algorithm that solves Rabin games with n vertices and with k colours in time

2
o(k log k) ⋅ nO(1)

.
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Chapter 2

Games, trees, and attractor

decompositions

In this chapter, we establish notation that we use throughout the rest of the thesis.

Most importantly, we define formally a parity game, and also demonstrate algo-

rithms that solve a given parity game. We restrict ourselves mostly to presenting

definitions and algorithms for parity games and we only define Rabin games. Con-

cepts and notations that appear in only one or two chapters are defined closer to

where they are needed.

Throughout, we use N to denote natural numbers {0, 1, 2, . . . }. We also use

N+ to denote the positive natural numbers {1, 2, . . . }. For two natural numbers i

and j, we denote the set of integers {x ∈ N ∣ i ⩽ x ⩽ j} with {i, . . . , j} and sometimes

we write [i, j] and just [j] to denote [1, j]. For a positive natural number n, we

write lg n to denote the binary logarithm, log2(n). We use lnn for the natural

logarithm of n, loge(n). For a set X, we write P(X) to represent its powerset, the

set consisting of all subsets of X.

A directed graph (V,E) is a finite set V of vertices and a set of ordered pairs

of vertices E, referred to as its edges. We say that a vertex v is a neighbour of u if

(u, v) ∈ E. Sometimes, we write u→ v to mean (u, v) ∈ E. An undirected graph is

a directed graph, except E is also required to be a symmetric relation. A path on

a directed graph is a sequence of vertices such that any two consecutive vertices in

the sequence belong to the set of edges. We say finite or infinite paths to refer to

the finite or infinite sequences of vertices that define this path. A cycle is a finite

path in this graph whose start and end vertices in the sequence are the same. A

simple cycle is a cycle where, other than the start and the end vertices in the path,

no two vertices are the same. When we refer to graphs, we mean directed graphs
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unless explicitly mentioned otherwise.

Parity games. Parity games [EJ91] are zero-sum, two-player games played be-

tween Steven and Audrey. A specific instance of the game G consists of a directed

graph (V,E) that is sink-free (where every vertex has an outgoing edge), a partition

(VEven, VOdd) of the set of vertices V , a distinguished start vertex from the set of ver-

tices, and a priority function π ∶ V → { 0, 1, . . . , d } that assigns every vertex v ∈ V

with a natural number π(v), called its priority. We say Steven owns vertices in

VEven and Audrey owns vertices in VOdd. We say that a parity game is (n, d)-small

if it has at most n vertices and the priorities of its vertices are bounded by d.

Strategies, Traps, and Dominions. For a parity game G as with the

graoh (V,E), a Steven strategy is a function from the set of all finite paths ending

at a Steven vertex on the graph (V,E) to a neighbour of this vertex. An infinite

path starting at the start vertex in the underlying graph is said to be a play. A play

v0, v1, . . . , vi, . . . is said to respect a strategy if for every vertex vi that belongs to

Steven, the vertex vi+1 is the one proposed by the strategy on the finite prefix of this

play ending at vi. An infinite play is said to be even if the highest priority of the

vertices visited infinitely often is even, and otherwise it is said to be odd. We also

say that a play is winning for Steven if it is even. Otherwise, the play is winning

for Audrey. A game is said to be winning for Steven if he has a strategy such that

every infinite play respecting the strategy is even. Such a strategy is often referred

to as Steven’s winning strategy. We know that parity games are determined, that is,

a game is winning for either Steven or Audrey [Mar75].

Furthermore, the positional determinacy theorem for parity games states

that if Steven has a winning strategy, then he can win by using strategies that do

not require him to “remember the past”. A positional Steven strategy is defined as

a set σ ⊆ E of edges such that:

• for every v owned by Steven, there is an edge (v, u) ∈ σ,

• for every v owned by Audrey, if (v, u) ∈ E then (v, u) ∈ σ.

We say that σ is an even positional winning strategy if all infinite paths in the

restricted graph (V, σ) are winning for him. Audrey positional strategies and posi-

tional winning strategies are defined similarly.

Theorem 2.0.1 (Positional determinacy of parity games [EJ91]). If a game G is

winning for Steven, then Steven has a positional winning strategy. The same holds

for Audrey.
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When talking about strategies in parity games, for the most part, since both

players have positional winning strategies, it is sufficient to verify the parity criterion

on all (simple) cycles in the graph restricting to this strategy. More specifically, a

parity game is winning for Steven if and only there is a positional winning strategy

for Steven such that all simple cycles in the graph obtained from restricted to this

strategy contains are even. Here, we say that a simple cycle in a parity game is

even when the highest priority occurring in such a cycle is even. Otherwise, we call

a simple cycle odd. However, we explicitly consider the parity criterion on infinite

plays obtained from such a strategy when we find it more convenient.

Henceforth, in the context of parity games, when we refer to strategies, we

usually mean positional ones. For a set S of vertices, we write G∩S for the substruc-

ture of G whose graph is the subgraph of (V,E) induced by the sets of vertices S.

Sometimes, we also write G \ S to denote G ∩ (V \ S). We assume throughout that

every vertex has at least one outgoing edge, and we reserve the term subgame to

substructures G ∩S, such that every vertex in the subgraph of (V,E) induced by S

has at least one outgoing edge. For a subgame G ′ = G∩S, we sometimes write V (G ′)
for the set of vertices S that the subgame G ′ is induced by. But mostly, when there

is no risk of confusion, we simply write G ′ instead of V (G ′).
For a non-empty set of vertices R, we say that a Steven strategy σ traps

Audrey in R if w ∈ R and (w, u) ∈ σ imply u ∈ R. We say that a set of vertices R

is a trap for Audrey [Zie98] if there is a Steven strategy that traps Audrey in R.

Observe that if R is a trap in a game G then G∩R is a subgame of G. For brevity, we

sometimes say that a subgame G ′ is a trap if G ′ = G∩T and the set T is a trap in G.

Moreover, the following property holds: if T is a trap for Steven in game G and T
′

is a trap for Steven in subgame G ∩ T then T
′

is also a trap for Steven in G. For a

set of vertices D ⊆ V , we say that a Steven strategy σ is a Steven dominion strategy

on D if σ traps Audrey in D and all paths in the subgraph (D,σ) are winning for

Steven. Finally, we say that a set D of vertices is a Steven dominion [JPZ08] if

there is a Steven dominion strategy on it.

Similarly, by swapping the roles of the two players, all concepts defined for

Steven in a parity game are also defined for Audrey. We note that the sets of Steven

dominions and of Audrey dominions are both closed under union, and hence the

largest Steven and Audrey dominions exist, and they are the unions of all Steven

and Audrey dominions, respectively. Moreover, every Steven dominion is disjoint

from every Audrey dominion.
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Reachability strategies and attractors. In a parity game G, for a target set of

vertices B and a set of vertices A such that B ⊆ A, we say that a Steven strategy σ

is a Steven reachability strategy to B from A if every infinite path (including the

starting vertex of the path) in the subgraph (V, σ) that starts from a vertex in A

contains at least one vertex in B.

For every target set B, there is the largest set (with respect to set inclusion)

A from which there is a Steven reachability strategy to B in G; we call this set the

Steven attractor to B in G [Zie98]. We further say the set A \B is the strict Steven

attractor to B in V (G). Audrey reachability strategies and Audrey attractors are

defined analogously. We highlight the simple fact that if A is an attractor for a

player in G then its complement V \ A is a trap for them and that attractors are

monotone operators: if B
′
⊆ B then the attractor to B

′
is included in the attractor

to B.

We define an attractor decomposition below that captures the intuition out-

lined in the introduction of this thesis.

If G is a parity game in which all priorities do not exceed a non-negative even

number d then we say that

A = ⟨A, (S1,A1, A1), . . . , (S`,A`, A`)⟩

is a Steven d-attractor decomposition [DJL18, DJL19] of G if:

1. A is the Steven attractor to the (possibly empty) set of vertices of priority d

in G;

and setting G1 = G \A, for all i = 1, 2, . . . , `, we have:

2. Si is a non-empty trap for Audrey in Gi in which every vertex priority is at

most d − 2;

3. Ai is a Steven (d − 2)-attractor decomposition of subgame G ∩ Si;

4. Ai is the Steven attractor to Si in Gi;

5. Gi+1 = Gi \Ai;

and the game G`+1 is empty. If d = 0 then we require that ` = 0.

We deviate slightly from this definition of an attractor decomposition in

Part II, in which we restate the modified definition to suit our algorithms.

The following proposition states that if a subgame induced by a trap for

Audrey has a Steven attractor decomposition then the trap is a Steven dominion.
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Indeed, a routine proof argues that the union of all the Steven reachability strategies,

implicit in the attractors listed in the decomposition, is a Steven dominion strategy.

Proposition 2.0.2 ([Zie98, DJL18]). If d is even, R is a trap for Audrey in G, and

there is a Steven d-attractor decomposition of G ∩ R, then R is a Steven dominion

in G.

Attractor decompositions for Audrey can be defined in the analogous way by

swapping the roles of players as expected, and then a dual version of the proposition

holds by symmetry.

The following theorem implies that every vertex in a parity game is either in

the largest Steven dominion or in the largest Audrey dominion—it is often referred

to as the positional determinacy theorem for parity games.

Theorem 2.0.3 ([EJ91, McN93, Zie98]). For every parity game G, there is a parti-

tion of the set of vertices into a trap for Audrey WEven and a trap for Steven WOdd,

such that there is a Steven attractor decomposition of G ∩ WEven and an Audrey

attractor decomposition of G ∩WOdd.

Ordered trees. Ordered trees are defined inductively; the trivial tree ⟨⟩ is an

ordered tree and so is a sequence ⟨T1, T2, . . . , T`⟩, where Ti is an ordered tree for

every i = 1, 2, . . . , `. The trivial tree has only one node called the root, which is a

leaf; and a tree of the form ⟨T1, T2, . . . , T`⟩ has the root with ` children, the root is

not a leaf, and the i-th child of the root is the root of the ordered tree Ti.

Because the trivial tree ⟨⟩ has just one node, we sometimes write ◦ to denote

it. If T is an ordered tree and i is a positive integer, then we use the expression

⟨T i⟩ = ⟨T, . . . , T ⟩ to denote the tree whose root has i children, each of which is the

root of a copy of T . We also use the ⋅ symbol to denote concatenation of sequences,

which in the context of ordered trees can be interpreted as sequential composition

of trees by merging their roots; for example,

⟨⟨◦3⟩⟩ ⋅ ⟨◦4, ⟨⟨◦⟩⟩2⟩ = ⟨⟨◦3⟩ ,◦4, ⟨⟨◦⟩⟩2⟩ = ⟨⟨◦,◦,◦⟩ ,◦,◦,◦,◦, ⟨⟨◦⟩⟩ , ⟨⟨◦⟩⟩⟩ .

For an ordered tree T , we write height (T ) for its height and leaves (T ) for

the number of its leaves, which are defined inductively: the trivial tree ⟨⟩ = ◦ has

1 leaf and its height is 1; the number of leaves of tree ⟨T1, T2, . . . , T`⟩ is the sum of

the numbers of leaves of trees T1, T2, . . . , T`; and its height is 1 plus the maximum

height of trees T1, T2, . . . , T`. Intuitively, an ordered tree is equitable if all its

branches have the same height. We say that an ordered tree T = ⟨T1, T2, . . . , T`⟩ is
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equitable if each Ti is equitable and they all have the same height. We say that an

ordered tree is (n, h)-small if it has at most n leaves and its height is at most h.

Example 1. The tree ⟨◦, ⟨◦3⟩ ,◦⟩ is the tree ⟨◦, ⟨◦,◦,◦⟩ ,◦⟩ it has 5 leaves and

height 3. Similarly, the tree ⟨⟨◦3⟩ ,◦4, ⟨⟨◦⟩⟩2⟩ has 9 leaves and height 4

Trees of Attractor Decompositions. The definition of an attractor de-

composition is inductive and we define an ordered tree that reflects the hierarchical

structure of an attractor decomposition. If d is even and

A = ⟨A, (S1,A1, A1), . . . , (S`,A`, A`)⟩

is a Steven d-attractor decomposition then we define the tree of attractor decompo-

sition A, denoted by TA, to be the trivial ordered tree ⟨⟩ if ` = 0, and otherwise, to

be the ordered tree ⟨TA1
, TA2

, . . . , TA`
⟩, where for every i = 1, 2, . . . , `, tree TAi

is

the tree of attractor decomposition Ai. Trees of Audrey attractor decompositions

are defined analogously.

Observe that the sets S1, S2, . . . , S` in an attractor decomposition as above

are non-empty and pairwise disjoint, which implies that trees of attractor decom-

positions are small relative to the number of vertices and the number of distinct

priorities in a parity game. The following proposition can be proved by routine

structural induction.

Proposition 2.0.4. If A is an attractor decomposition of an (n, d)-small parity

game then its tree TA is (n, ⌈d/2⌉ + 1)-small.

Labelled ordered tree. We define labelled ordered trees similar to ordered trees:

the trivial tree ⟨⟩ is an L-labelled ordered tree and so is the following sequence

⟨(a1,L1), (a2,L2), . . . , (ak,Lk)⟩ ,

where L1, L2, . . . , Lk are L-labelled ordered trees, and a1, a2, . . . , ak are distinct

elements of a linearly ordered set (L,⩽) and a1 < a2 <⋯ < ak in that linear order.

Note that ordered trees can be naturally viewed as N-labelled ordered trees in which

the sequence a1, a2, . . . , ak is always an initial segment of the positive integers. We

define the unlabelling of a labelled ordered tree

⟨(a1,L1), (a2,L2), . . . , (ak,Lk)⟩ ,
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recursively, to be the ordered tree ⟨T1, T2, . . . , Tk⟩, where Ti is the unlabelling

of Li for every i = 1, 2, . . . , k. An L-labelling of an ordered tree T is an L-

labelled tree L whose unlabelling is T . We define the natural labelling of an ordered

tree T = ⟨T1, . . . , Tk⟩, again by a straightforward induction, to be the N-labelled

tree ⟨(1,L1), . . . , (k,Lk)⟩, where L1, . . . , Lk are the natural labellings of trees T1,

. . . , Tk. Unsurprisingly, the unlabelling of the natural labelling of an ordered tree T
is tree T itself.

For an L-labelled tree ⟨(a1,L1), . . . , (ak,Lk)⟩, its set of nodes is defined

inductively to consist of the root ⟨⟩ and all the sequences in L∗ of the form ⟨ai⟩ ⋅
v, where v ∈ L∗ is a node in Li for some i = 1, . . . , k, and where the symbol

⋅ denotes concatenation of sequences. For example, the natural labelling of tree

⟨⟨◦3⟩ ,◦4, ⟨⟨◦⟩⟩2⟩ has the set of nodes that consists of the following set of leaves

⟨1, 1⟩, ⟨1, 2⟩, ⟨1, 3⟩, ⟨2⟩, ⟨3⟩, ⟨4⟩, ⟨5⟩, ⟨6, 1, 1⟩, ⟨7, 1, 1⟩, and all of their prefixes.

Indeed, the set of nodes of a labelled ordered tree is always prefix-closed. Moreover,

if L ⊆ L∗ then its closure under prefixes uniquely identifies a labelled ordered tree

that we call the labelled ordered tree generated by L, and its unlabelling is the

ordered tree generated by L. For example, the set { ⟨1⟩ , ⟨3, 1⟩ , ⟨3, 4, 1⟩ , ⟨6, 1⟩ }
generates ordered tree ⟨◦, ⟨◦, ⟨◦⟩⟩ , ⟨◦⟩⟩.

A node is the ancestor of another node if the former is a prefix of the latter.

A node is a descendant of its ancestor. The node ⟨3⟩ is an ancestor of ⟨3, 4, 1⟩ and

they are both descendants of the root ⟨⟩. A labelled ordered tree is a totally ordered

set if we use the lexicographic order on the node and enforce that the ancestor is at

most as large as the node itself. Using such an order, we say that a parent of a node

is the largest ancestor of a node other than itself. We say a node is the child of its

parent node. Since the root ⟨⟩ is the smallest node, it does not have a parent and

the leaves of the tree do not have a child. Finally, two nodes are said to be siblings

if they share the same parent.

Embedding ordered trees. Intuitively, an ordered tree T can be embedded in T
′

if T can be obtained from T
′

by pruning some subtrees. More formally, the trivial

tree ⟨⟩ can be embedded in every ordered tree, and ⟨T1, T2, . . . , Tk⟩ can be embedded

in ⟨T ′1, T ′2, . . . , T ′`⟩ if there are indices i1, i2, . . . , ik such that 1 ⩽ i1 < i2 <⋯ < ik ⩽ `

and for every j = 1, 2, . . . , k, we have that Tj can be embedded in T
′
ij .

Universal ordered trees. An ordered tree is (n, h)-universal [CDF
+

19] if every

(n, h)-small ordered tree can be embedded in it. An obvious candidate for a universal

tree is obtained by concatenating all (n, h)-small ordered trees in some order. But
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an improvement to this naive universal tree is the complete n-ary tree of height h

that can be defined by induction on h: if h = 0 then Cn,0 is the trivial tree ⟨⟩,
and if h > 0 then Cn,h is the ordered tree ⟨Cnn,h−1⟩. The tree Cn,h is obviously

(n, h)-universal but its size is exponential in h.

Jurdziński and Lazić gave a construction of an (n, h)-universal tree Sn,h,

whose size is at most n(⌈lgn⌉+h+1
h

). An algorithm whose running time is a polynomial

of the size of the tree would be both quasi-polynomial and also fixed parameter

tractable with respect to h. To acknowledge their fundamental contribution, we

refer to these trees as Jurdziński-Lazić universal trees.

For g ⩾ 0, let Ig be the trivial tree, that is the tree with exactly one leaf, of

height g. For example, I1 = ⟨⟩ and I3 = ⟨⟨⟨⟩⟩⟩ = ⟨⟨◦⟩⟩. Such an Sn,h is constructed

inductively as follows: S1,h = Ih and Sn,1 = ⟨◦n⟩. Finally, the (n, h)-universal tree

is declared to have two copies of the (n/2, h)-universal side attached—one to each

side of the (n, h − 1)-universal tree with an extra root node. More formally,

Sn,h = Sn/2,h ⋅ ⟨Sn,h−1⟩ ⋅ Sn/2,h

Parys’s (n, h)-universal tree, so named after the recursive attractor-based

algorithm of Parys [Par19] is as follows: if h = 0 then Pn,h is again defined to be the

trivial tree ⟨⟩. If h > 0 then Pn,h is defined to be the ordered tree

⟨P⌊n/2⌋,h−1
⌊n/2⌋⟩ ⋅ ⟨Pn,h−1⟩ ⋅ ⟨(P⌊n/2⌋,h−1)⌊n/2⌋⟩ .

Ordering on bitstrings. We introduce the total linear order used by Jurdziński

and Lazic on the set W = { 0, 1 }∗ of bit strings: for each bit b ∈ { 0, 1 }, and for all

bit strings β, β
′
∈ { 0, 1 }∗, if ε is the empty string, then we have

0β < ε < 1β, and bβ < bβ
′

iff β < β
′
.

Theorem 2.0.5 ([JL17]). The prefix-closure of the set of h-length sequences, where

the word formed by the concatenation of sequences that have at most ⌈lg n⌉ bits,

forms the set of nodes of a W-labelled Jurdziński-Lazić universal tree Sn,h.

Jurdziński and Morvan [JM20, JMT22] produced an algorithm that unified

both McNaughton-Zielonka algorithm and its recent quasi-polynomial variants due

to Parys [Par19], and due to Lehtinen, Schewe, and Wojtczak [LPSW22] by produc-

ing a unifying algorithm whose recursive subcalls were dictated by an interleaving

of universal trees. In Algorithm 1, we reproduce the Jurdziński-Morvan algorithm

to solve parity games, by stating procedure JM-Even (which they call UnivEven)
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and only remark that procedure JM-Odd is defined analogously. Their algorithm

computes attractors in a similar manner to the original McNaughton-Zielonka algo-

rithm, but with its recursive calls guided by two trees T Odd
and T Even

instead. They

Algorithm 1 The Jurdziński-Morvan Algorithm

Input: A game G with maximum (even) priority d, two trees T Even
, and T Odd

whose heights are both d/2 + 1.
Output: A subset of vertices of the game ▷ These vertices are winning for Steven

if T Even
and T Odd

are both universal.
1: procedure JM-Even(G, d, T Even

, T Odd
)

2: let T Odd
= ⟨T Odd

1 , T Odd
2 , . . . , T Odd

k ⟩
3: G1 ← G
4: for i← 1 . . . k do
5: Di ← π

−1(d) ∩ Gi
6: Ai ← Steven attractor to Di in Gi
7: G ′i ← Gi \Ai
8: Ui ← JM-Odd (G ′i, d − 1, T Even

, T Odd
i )

9: A
′
i ← Audrey attractor to Ui in Gi

10: Gi+1 ← Gi \A′i
11: end for
12: return V (Gk+1)
13: end procedure

further remarked that on setting tree T Odd
and T Even

to the complete trees Cn,d/2+1
and Cn,d/2 respectively, Algorithm 1 simulates the recursive calls of McNaughton

and Zielonka. If instead, these trees are declared to be Parys’s universal trees

Pn,d/2+1 and Pn,d/2, we get Parys’s [Par19, LPSW22] recursive attractor-based algo-

rithm. Finally, Lehtinen, Schewe and Wojtczak’s [LSW19, LPSW22] improvement

of Parys’s algorithm can be obtained by setting the trees to the Jurdziński-Lazić

universal trees Sn,d/2+1 and Sn,d/2.

In this thesis, especially in Part II, we present algorithms in which universal

trees are implicitly present. These trees are never given as part of the input to any

of the algorithms. We instead assume that our algorithm has access to the nodes

of these trees and can perform elementary operations on them, such as finding the

next sibling and finding the parent, efficiently. All the above-mentioned universal

trees, and the ones we introduce in the future chapters, satisfy this requirement.

Rabin games. Rabin games are also played on a directed graph [Rab69, EJ91]

between Steven and Audrey. A Rabin game consists of a directed graph (V,E)
whose set of vertices V are partitioned among the two players, a start vertex and
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two subsets of the set of colours {c0} ∪ C for each vertex v denoted by Gv of a set

good colours and a set Rv of bad colours. We require above that c0 is a colour that

is distinct from all colours in C and Gv does not contain c0 for any vertex v. Such

games are also called a (c0, C)-colourful Rabin game.

An infinite path in the underlying graph satisfies the Rabin condition if there

exists some colour such that among the set of vertices visited infinitely often, there

is a vertex v that contains c in Gv, and none of the vertices v that appear infinitely

often contain c in Rv.

Steven’s positional strategy σ is defined similarly to his positional strategy

in a parity game. A (positional) Steven strategy is a set σ ⊆ E of edges such that:

• for every v that belongs to Steven, there is an edge (v, u) ∈ σ,

• for every v that belongs to Audrey, if (v, u) ∈ E then (v, u) ∈ σ.

A positional strategy σ is winning for Steven if all infinite paths in the game re-

stricted to the game graph (V, σ) satisfy the Rabin condition. Steven wins the

Rabin game if he has some positional strategy to win in G. Although in our intro-

ductory definition, we did not exclude the possibility of non-positional strategies, it

is enough to consider only positional strategies. Rabin games are won by Steven us-

ing positional strategies, although Audrey might require winning strategies that are

not positional to win a Rabin game [EJ88, EJ99]. Steven traps, Steven attractors,

Audrey traps, and Audrey attractors are defined exactly as for parity games.

Observe that an (n, d)-small parity game on an graph (V,E) can be en-

coded as a (c0, C)-colourful Rabin game on the same directed graph where C =

{1, 2, . . . , ⌊d/2⌋} has ⌊d/2⌋ colours. We assign the good sets and bad sets to be

Gv = {i ∣ π(v) ⩾ 2i} and Bv = {i ∣ π(v) ⩾ 2i + 1},

for all i ∈ {1, . . . , ⌊d/2⌋} and all v ∈ V . It is routine to verify that any infinite path on

such a (c0, C)-colourful game is winning for Steven if and only if the corresponding

path in the parity game is even.

Because the subsets of vertices for each colour form a chain with respect

to the partial order induced by set-inclusion, the parity condition is also known as

Rabin-chain condition.

We informally mention other related games that we refer to in this thesis.

Muller games. A Muller game [McN93] G consists of an arena that is a directed

graph (V,E) whose set of vertices is partitioned among Steven and Audrey, a finite
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subset of tags S, a tagging function that labels each vertex from V with a tag from S,

and an objective F that is specified by a family of subsets of tags F ⊆ P(S). We

define (non-positional) strategies, plays, and plays respecting strategies similarly to

parity games. A play is said to be winning for Steven if the set of tags among the

set of vertices visited infinitely often by this play is in F . Steven wins the game if

he has a strategy, such that all plays that respect this strategy are winning for him.
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Chapter 3

Solving nested fixpoint

equations

Computing fixpoints is fundamental in computer science. The problem of identify-

ing the solution to a system of nested fixpoint equations (NFEs) over finite lattices

is known to be computationally equivalent to identifying the winner of a parity

game [LBC
+

94, Sei96, BKMMP19]. However, most of the reductions involve an ex-

ponential increase in the size of the resulting parity game. The satisfiability problem

of the coalgebraic µ-calculus has also been reduced to it [HS19]. Notably, break-

through result of Calude et al. could be interpreted as an algorithm that solves spe-

cific kinds of fixpoint equations in quasi-polynomial time. Following their progress,

there were several algorithms that were aimed at solving more general fix-point equa-

tions using universal trees [ANP21] and universal graphs [HS21]. Hausmann and

Schröder [HS21] gave a quasi-polynomial algorithm to solve NFEs using progress

measures on universal graphs. In parallel, Arnold, Niwiński, and Parys [ANP21]

solved NFEs using the key result on decompositions of dominions similar to that of

Jurdziński and Morvan’s [JM20, JMT22] universal algorithm.

Within this context, our contribution is to provide a distinct perspective to

solving nested fixpoints. We achieve this by transforming a nested fixpoint equation

into a fixpoint game, inspired by the approach of Hausmann and Schröder [HS21],

yet utilising Jurdziński and Morvan’s universal algorithm parameterised by two trees

as in [ANP21]. Note that fixpoint games are exponentially larger than the repre-

sentation of a fixpoint equation. However, we provide a modification to the Jur-

dziński-Morvan algorithm, thereby ensuring that this modified algorithm operates

on a specific type of subgames of these fixpoint games, termed “flowery subgames.”

By capitalising on the properties of flowery subgames, we bypass the exponential
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representation typical for fixpoint games.

Comparatively, our approach, published in 2022 [JMT22] aligns with the un-

derlying concepts of Arnold, Niwiński, and Parys’ algorithm, as we also utilise a pair

of trees to guide the computation process. However, we differ in two key aspects.

Firstly, it should be noted that Arnold, Niwiński, and Parys [ANP21] also provide an

asymmetrical version of their algorithm—using a technique of Seidl [Sei96]—whose

running time is almost a square-root in the worst case than our proposed algorithm.

Their asymmetric algorithm uses a technique of Seidl [Sei96], which ensures that

the required number of function evaluations to solve the nested fixpoint equation is

linear in the size of one universal tree, as opposed to ours, which requires time that

is a square of the size of a universal trees. Secondly, our algorithm includes the com-

putation of attractors—inherited from the Jurdziński-Morvan algorithm for solving

parity games—which is absent in both the symmetric and asymmetric versions of

the algorithms by Arnold, Niwiński, and Parys.

3.1 Nested fixpoint equations

Nested fixpoint equations, as the name suggests, are a system of equations, where

each equation is a fixpoint equation defined on arbitrary functions over a finite

lattice. In this chapter, however, we only consider nested fixpoint equations over

finite powerset lattices.

Consider a finite set of elements U and its powerset lattice P(U). Let f

be a monotone function (component-wise monotone) from P (U)d to P (U)d. The

function f can be expressed as a d-tuple ⟨f1,⋯, fd⟩ of functions, where each function

fi, for i ∈ {1, . . . , d} is from P (U)d to P (U) and each fi is just the projection of the

function f to the i-th component. Since there is a natural bijection from d-tuples

of subsets of U to subsets of (U × [d]), we instead denote f as a function from

P (U × [d]) to P (U × [d]).
A nested fixpoint equation is a system of d fixpoint equations of the form:

Xi =ηi fi(X1, . . . , Xd) (∗)

for i ranging over 1, . . . d, where ηi = ν, refers to the greatest fixpoint operator, if

i is odd, and ηi = µ, which refers to the least fixpoint operator. We call a system

such as Eq. (∗) a nested fixpoint equation and write X =η f(X) to depict it. One

could consider a more general form of fixpoint equations where ηi ∈ {µ, ν}, but for

simplicity of presentation, we restrict ourselves to the above.

The solution of a system of d equations as defined by Eq. (∗), is a subset of
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U × [d], defined recursively as follows. The solution of the empty set of equations

is the empty tuple. For a system of one or more fixpoint equations, we define a

function f
d−1

from subsets of U to subsets of (U × [d − 1]). This function f
d−1

takes as input Yd, a subset of U , and uses this input to fix Xd = Yd in the system of

equations. The solution to the system of d− 1 equations is obtained by fixing Xd to

be Yd as the output of f
d−1

. We finally say the solution of the system of equations

is (fd−1(Yd), Yd), where Yd = ηd (λXd.fd(fd−1(Xd), Xd)).

Fixpoint Games. For a system f of nested fixpoint equations, we define an equiv-

alent parity game Gf , called a fixpoint game. The solution of the parity game

Gf correlates to the solution of the system of nested fixpoint equation defined by

X =η f(X) [BKMMP19, HS21].

The underlying graph in the game Gf so defined is (Vf , Ef) where the set of

vertices Vf consists of the set and the powerset of U×[d], more precisely, it is exactly

the set (U × [d]) ∪ {vA ∣ A ⊆ U × [d]}. The vertices corresponding to elements of

the set (U × [d]) belong to Steven and the ones corresponding to subsets of the

same set belong to Audrey. The priority function of Gf , represented by πf , assigns

Steven’s vertices (u, i) to i, whereas all vertices belonging to Audrey are assigned

priority 0. The edges from a vertex (u, i), belonging to Steven in Gf , lead to the set

of Audrey’s vertices {vA ∣ (u, i) ∈ f(A)} and the edges from a vertex vA, belonging

to Audrey, lead to the set of Steven’s vertices {(u, i) ∣ (u, i) ∈ A}.

Theorem 3.1.1 ([BKMMP19], Theorem 4.8). For a system consisting of d fixpoint

equations Xi =η fi(X1, . . . , Xd), whose solution is ⟨Y1, . . . , Yi⟩, the element u ∈ Yi

if and only if Steven wins from the vertex (u, i) in the corresponding fixpoint game

Gf .

Due to Theorem 3.1.1 of Baldan et al., [BKMMP19], we henceforth deal only

with fixpoint games in order to solve our fixpoint equations.

3.2 Solving fixpoint games

We provide a way to solve fixpoint games by modifying the Jurdziński-Morvan al-

gorithm. We define a specific kind of subgames that we call flowery subgames and

show that they are pertinent for solving fixpoint games using attractor decomposi-

tion algorithms.

Intuitively, for two non-empty subsets of the set (U × [d]), the flowery sub-

game S(X,Y ) represents a subgame of Gf whose set of vertices consists of
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• all vertices of Steven belonging to Y , resembling the core of a flower;

• all of Audrey’s vertices vA where A is a subset of X intersecting non-trivially

with Y , resembling the petal of a flower.

Definition 3.2.1 (Flowery subgames). For a nested fixpoint game Gf , obtained from

a system of d equations over the lattice P(U), and two subsets ∅ ⊊ Y ⊆ X ⊆ U×[d],
we define the flowery subgame S(X,Y ) to be the subgame induced by the vertices

Y ⊎ {vA ∣ A ⊆ X and A ∩ Y ≠ ∅}.

We also call a subgame G ′ flowery if there are subsets X and Y of (U × [d]) such

that this subgame G ′ is equal to S(X,Y ).
In the game Gf , on removing vertices that have no outgoing edges along

with the respective attractors to these sets of vertices, that is, Audrey attractors to

Steven’s vertices with no outgoing edges and vice versa, we get a flowery subgame.

Moreover, the following lemma reassures us that all significant operations performed

by the universal algorithm for parity games on flowery subgames, result in flowery

subgames.

Lemma 3.2.2 (Flowery subgame lemma). The subgames Gi computed by the (mod-

ified) procedure JM-Even in the Jurdziński-Morvan algorithm (as in Algorithm 1)

are flowery if the input game G is a flowery subgame. In particular, Gk+1, which is

the subgame returned by the procedure, is flowery.

An analogous lemma holds for Audrey’s procedure JM-Odd. The attractor

to a set of vertices during a run of the algorithm can be computed by at most d∣U∣
many evaluations of f on subsets of U ×[d]. Therefore, we can solve nested fixpoint

games in quasi-polynomial time using an attractor decomposition algorithm. This

approach resembles Algorithm 1, with only minor adaptations required. Specifically,

the subgames are replaced by flowery subgames, represented by two subsets of U .

Furthermore, the computation of attractors is replaced with suitably defined modi-

fications tailored for flowery subgames, as outlined in the statement of Lemma 3.2.5.

Theorem 3.2.3. The modified universal algorithm that solves nested fixpoint equa-

tions on trees T Odd
and T Even

makes ∣T Odd∣ ⋅ ∣T Even∣ many recursive calls. Each

recursive call makes at most 2d∣U∣ function evaluations of f .

Plugging in quasi-polynomial universal trees, we get the following theorem

as a corollary.
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Theorem A. The modified Jurdziński-Morvan algorithm that computes nested fix-

point equations takes quasi-polynomial time and polynomial space, when the under-

lying trees are quasi-polynomial sized universal trees.

We dedicate the remainder of the chapter to proving Lemma 3.2.2 and The-

orem A. Whenever we want to denote the fixpoint obtained by repeated application

of a monotone function f on a set, we call this f
∗
. Before we embark on the proofs,

we would like to call attention to the following property of flowery subgames. It

shows how complements of two specific kinds of flowery sets result in another flowery

subgame. We will use this property in several of our proofs.

Property 1. For A ⊆ Y ⊆ X ⊆ (U × [d]), we have:

S(X,Y ) \ S(X,A) = S(X \A, Y \A).

Notice that S(X \A, Y \A) = S(Z ∪W,W ), where Z = X \ Y and W = Y \A.

Consider the following proposition useful in the proof of the Lemma 3.2.2.

Proposition 3.2.4. Given a fixpoint game Gf , after removing the Steven attractor

to the set of Audrey’s vertices with no outgoing edges and the Audrey attractor to

Steven’s vertices with no outgoing edges, we are left with a flowery subgame.

Proof. The game Gf contains exactly the vertices in the subgame S(U×[d], U×[d])
along with v∅.

• Initially, we remove the only Audrey vertex with no outgoing edge: v∅, along

with its Steven attractor. The Steven attractor to v∅ in Gf is exactly all the

vertices of the flowery set S(C,C) and v∅, where C = f
∗(∅) is winning for

Steven. The remaining subgame after removing these vertices is the flowery

subgame S(U × [d], (U × [d]) \ C) from Property 1.

• Let us call the flowery subgame obtained from the above procedure S(X,Y ).
Observe that if Y ⊆ f(X), then there is always an outgoing edge for each

vertex in the subgame. If not, we remove the Audrey attractor to the set

of Steven’s vertices with no outgoing edges: Y ∩ f(X). The complement of

this Audrey attractor turns out to be the flowery subgame S(X,Y \ f(X))
from Property 1.
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Assuming now that we always have outgoing edges in flowery subgames, we

consider the following lemma, which shows how we can compute attractors to sets

in these subgames with at most d ⋅ ∣U∣ many calls to the function f .

Let us now prove Lemma 3.2.2. We proceed by proving a stronger statement

than the one in Lemma 3.2.8. To prove Lemma 3.2.8, in turn, we need Lemma 3.2.5.

Lemma 3.2.5 intuitively asserts that attractors of specific flowery subgames are

specific flowery subgames whose complement is also flowery.

Lemma 3.2.5. In a flowery subgame G = S(X,Y ):

(a) the Steven attractor to a set of Steven’s vertices A ⊆ Y in G = S(X,Y ) where

Z = X \ Y is

S(Z ∪ Pre
∗
G,Even(A),Pre

∗
G,Even(A))

where PreG,Even(A) = (f(Z ∪A) ∩ Y ) ∪A;

(b) the Audrey attractor to a set of Steven’s vertices A or a subgame S(X,A) in

G = S(X,Y ) is

S(X,Pre
∗
G,Odd(A))

where PreG,Odd(A) = (f(X \A) ∩ Y ) ∪A.

We will break down our Lemma into Propositions 3.2.6 and 3.2.7, which will

result in Corollary 3.2.7.1, from which Lemma 3.2.5 follows.

Proposition 3.2.6. In a flowery subgame G = S(X,Y ) and A ⊆ Y , the vertices

of the flowery subgame S(Z ∪ PreG,Even(A),PreG,Even(A)) are exactly those from

which Steven has a strategy to visit A in at most three steps, where PreG,Even(A) =
(f(Z ∪A) ∩ Y ) ∪A.

Proof. We will argue about vertices from which Steven has a strategy to visit vertices

in A in at most one, two and three steps below.

(1) Consider any Audrey vertex vB where B ⊆ Z ∪ A and the intersection of B

with A is non-empty. From such a vB, in one step, Steven can ensure that a

play reaches A. All such vertices vB along with the core A are exactly denoted

by the vertices of the subgame S(Z ∪A,A).

(2) We will show that, from any of Steven’s vertex (u, i) ∈ PreG,Even(A) = f(Z ∪
A)∩ Y }∪A, there is a strategy for him to reach a vertex in A owned by him

in at most two steps. We will show that
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(⇒) in one step, Steven can move to some Audrey vertex vB ∈ S(Z ∪A,A);
(⇐) from vertices not in PreG,Even(A), all of Steven’s outgoing edges lead to

a vertex not in S(Z ∪A,A).

To show the forward direction, let (u, i) ∈ (f(Z ∪ A) ∩ Y ) ∪ A. If (u, i) ∈ A
then we are done, if not, the strategy for Steven from (u, i) is to choose the

Audrey vertex vZ∪A. Such an edge exists since (u, i) ∈ f(Z ∪ A), and this

Audrey vertex is in the flowery subgame S(Z ∪A,A).

To show the reverse direction,consider (u, i) ∉ f(Z ∪ A) ∪ A but (u, i) ∈ Y .

All outgoing edges from the Steven vertex (u, i) lead to an Audrey vertex vB

in S(X,Y ) such that B has some element other than from Z or A, that is,

B \ (Z ∪ A) ≠ ∅. This follows from the monotonicity of f along with our

assumption that (u, i) ∉ f(Z ∪A). After one step, the game is at an Audrey

vertex vB that it is not in S(Z ∪A,A).

(3) The argument to conclude that S(X,PreG,Odd(A)) is exactly the set we desire

is similar to (1).

Proposition 3.2.7. In a flowery subgame G = S(X,Y ) and for a set of Steven

vertices A ⊆ Y in it, Audrey has a strategy to visit some vertex from the set of

Steven vertices A in at most three steps from all the vertices in the flowery subgame

S(X,PreG,Odd(A)), where PreG,Odd(A) = (f(X \A)∩Y )∪A. This subgame is also

contains all vertices from which Audrey has such a strategy.

Proof. We show the set of vertices from which Steven has a strategy to visit vertices

in A in at most one, two and three steps below.

(1) From vertex vB where B of X which intersects with A non-trivially, Audrey

would be able to reach a vertex in A in at most one step. This is exactly all

Audrey’s vertices in the flowery subgame S(X,A).

(2) We will show that, in one step, Audrey has a strategy to visit the subgame

S(X,A) from the vertices in PreG,Odd(A)∪A. We do this by showing inclusion

in two directions.

(⇒) Consider (v, j) ∈ PreG,Odd(A) = (f(X \A)∩ Y )∪A. If (v, j) ∉ A, then

(v, j) ∈ Y and f(X \A). Mainly note that (v, j) ∉ f(X \ A). Since all

subgames are such that there is always an outgoing edge and given that

f is monotone, any Audrey vertex vB in S(X,Y ) which has an edge to

it from (v, j) must be such that B ∩ A ≠ ∅. For any choice successors

37



from (v, j) of Steven will lead to a vertex B that intersects with A and

hence there is a strategy for Audrey to move to a vertex in (u, i) in the

set B ∩A.

(⇐) Now we need to show a strategy for Steven to avoid S(X,PreG,Odd(A)),
for two steps from all other Steven vertices. Let us denote PreG,Odd(A) by

W . Note that the complement of S(X,W ) in S(X,Y ) is S(X\W,Y \W ).
Also notice that

Y \W = Y \ (f(X \A) ∪A) .

So, any (w, j) ∈ Y \ Z is in Y and since (w, j) ∉ W , (w, j) ∈ f(X \ A).
This means that, from any such (w, j), Steven can choose the vertex vB

in S(X \W,Y \W ) where B ⊆ X \A, making sure that in the next step

Audrey will not be able to take the play to Steven’s vertex in A.

(3) From the structure of the game, it is easy to see that any vB such that B inter-

sects with PreG,Odd(A)∪A would be able to visit an element in PreG,Odd(A)∪
A, which we have shown is exactly the set of vertices from which Audrey could

force the play in at most two steps to visit A.

From the proof of the Propositions 3.2.6 and 3.2.7, we can extend these to

show the corollary below from which Lemma 3.2.5 follows.

Corollary 3.2.7.1. In a flowery subgame G = S(X,Y ) and A ⊆ Y ,

• The flowery subgame S(Z ∪ PreG,Even(A),PreG,Even(A)) is the set of vertices

from which Steven has a strategy to visit the vertices in S(Z∪A,A) in at most

two steps, where PreG,Even(A) = (f(Z ∪A) ∩ Y ) ∪A;

• The vertices of S(X,PreG,Odd(A)) is the set of vertices from which Audrey has

a strategy to visit a vertex in S(X,A) in at most two steps.

Lemma 3.2.5 follows naturally from Corollary 3.2.7.1 thus concluding the

proof of Lemma 3.2.5.

We will now proceed to the main proof of the section, where we prove a

(slightly) stronger version of our flowery subgame lemma below.

Lemma 3.2.8. (i) If JM-Even is run on a flowery subgame S(X,Y ), then in

all iterations in the for-loop, the subgame Gi = S(X\A′i, Y \A′i), where A
′
i ⊆ Y .

(ii) If JM-Odd is run on a flowery subgame S(X,Y ), then for each i, the subgame

Gi = S(X,Y \A′i), where A
′
i ⊆ Y .
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Proof. We will prove this by induction on the sum of the number of vertices in these

subgames and the number of vertices on which these calls are made. For the base

case, with an empty set irrespective of any priority, the above statement is trivially

true. We will now prove that (i) and (ii) hold for games with at least one vertex

and trees T Even
and T Odd

. The proof follows from Lemma 3.2.5 and by an induction

on the size of the game and tree.

(i) Since G1 = G = S(X,Y ), we show that if Gi is of the form S(X \ A′i, Y \ A′i)
where Ai ⊆ Y , then Gi+1 is also of the form S(X \A′i+1, Y \A′i+1), where Ai+1 ⊇ Ai.

For convenience, we will call X \A′i as Xi and Y \A′i as Yi. We will show that Gi+1 is

of the form S(X \A′i+1, Y \A′i+1) by showing that in fact it is S(Xi \A′i+1, Yi \A′i+1)
for some A

′
i+1 ⊆ Y . First, note that G ′i is a subgame of obtained by removing Ai,

which is the Steven attractor to the set Di containing only Steven vertices which,

moreover, have the highest even priority vertices in Gi. From Lemma 3.2.6, we have

for Z = X \ Y ,

Gi \Ai = S(Xi, Y
′
i ) \ S(Z ∪ Pre

∗
Gi,Even(Di),Pre

∗
Gi,Even(Di))

Since Z = X \ Y = Xi \ Yi, we have

G ′i = Gi \Ai = S(Xi, Yi) \ Pre
∗
Gi,Even(Di)

The Ui computed by performing JM-Odd on G ′i must be of the form S(Xi, Zi)
for Zi ⊆ Yi by induction and the attractor to Ui, must be of the form S(Xi,Wi)
from Proposition 3.2.6. Hence,

Gi+1 = S(Xi, Yi) \ S(Xi,Wi) = S(Xi \Wi, Yi \Wi).

(ii) We will show that if Gi is of the form S(X,Yi), then Gi+1 is of the form

S(X,Yi+1) for Yi+1 ⊆ Yi. In each iteration i, the Audrey attractor to Di in Gi is of

the form S(X,Ai). This shows that G ′i, which is obtained by removing the Audrey

attractor S(X,Ai) from Gi is of the form S(Xi\Ai, Yi\Ai). The procedure JM-Odd

on Gi gives Ui of the form S(Xi \Wi, Yi \Wi) by induction, and Steven attractor

to the set S(Xi \Wi, Yi \Wi) would be of the flowery subgame S(Xi \W ′
i , Yi \W ′

i)
for some W

′
i ⊆Wi. So, Gi+1, which is obtained from removing this Steven attractor

from Gi would be obtained as follows

Gi+1 = Gi \ S(Xi \W ′
i , Yi \W ′

i) = S(X,Yi \W ′
i).
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3.3 Concurrent parity games

We consider a concurrent stochastic version of parity games in this subsection [Sha53,

McN93, dAH00], to illustrate a corollary of Theorem A to the field of parity games

research. We consider the two player version as studied by Chatterjee, Alfredo and

Henzinger in [CAH11]. For an exact definition of these concepts, we refer the reader

again to the work of Chatterjee, Alfaro, and Henzinger [CAH11] and restrict our-

selves to an informal discussion here. These games are played between Steven and

Audrey, but instead of partitioning the vertices among the two players, they take

simultaneous actions at each vertex and the token moves to a neighbour depending

on the actions of both players. The outcome is depicted in the form of a matrix,

where the columns represent Steven’s choice of actions, and the rows correspond to

Audrey’s choice. When both players at each turn pick a row and a column simulta-

neously, their outcome is determined by the entry of this matrix, where each entry

of this matrix is just another vertex of this game.

One might also consider a stochastic version, where the outcome of simulta-

neous actions is based on a pre-decided probability distribution. For the stochastic

version, each entry is a further probability distribution among the vertices. A token

is moved from a start vertex, based on the simultaneous choice that determines the

next vertex, thus creating an infinite play. This infinite play is then required to sat-

isfy the parity condition, that is, the highest priority seen must be even, for Steven

to win this play. Unlike the vanilla version of parity games, both players are allowed

to use a randomised strategy, i.e., a strategy where the next action is proposed with

the help of a probability distribution. A vertex is called limit-winning for Steven

(respectively Audrey) if for all ε, Steven has a (randomised) strategy such that all

plays from that vertex obeying this strategy with probability at least 1. That is,

for all 0 < ε ⩽ 1, there is a strategy that ensures with probability at least (1 − ε)
that the path that obeys the strategy is winning for Steven. Note that turn-based

parity games can also be encoded as a concurrent parity game, where from Steven’s

vertices, Audrey’s actions do not affect where the token moves to the next and

vice-versa.

The decision question at hand is to determine whether a vertex is a limit-

winning for Steven. In concurrent parity games, unlike our definition of parity

games, a player might need both infinite memory and randomisation to win these

games. We refer the reader to the work of Chatterjee, Alfaro, and Henzinger [CAH11]

for a rigorous definition of the above games along with examples for the claims above.

In their paper, they show that solving concurrent parity games is in NP ∩ coNP as
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a corollary of the following theorem.

Theorem 3.3.1 ([CAH11, Theorem 5, Lemma 29 and Lemma 30]). Limit-winning

in a concurrent parity game can be expressed as a system of nested fixpoint equa-

tions over the powerset lattice of the set of edges with alternation depth at most 2d

for a function, whose evaluation involves solving another system of nested fixpoint

equations also with depth at most 2d.

An easy corollary from Theorem A along with Theorem 3.3.1, we have the

following.

Corollary 3.3.1.1. Limit-winning vertices of Steven and Audrey in concurrent par-

ity games can be determined in quasi-polynomial time.
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Chapter 4

The Strahler number of a parity

game

Strahler Number. The Strahler number of a rooted tree is the largest

height of a perfect binary tree that is its minor. This concept was initially introduced

by Horton (1945) and later formalised by Strahler (1952). They developed this

notion during their morphological exploration of river networks within the field of

hydrogeology. The Strahler number’s applicability isn’t limited to hydrogeology—it

has found relevance across various scientific disciplines, including botany, anatomy,

neurophysiology, physics, and molecular biology, all of which deal with branching

patterns. In the realm of computer science, Ershov [Ers58] recognised the Strahler

number as the minimum number of registers necessary to evaluate an arithmetic

expression. Subsequently, this concept has experienced numerous resurgences across

different domains within computer science. Notable surveys by Knuth [Knu73],

Viennot [Vie90], and Esparza, Luttenberger, and Schlund [ELS16] have captured its

reappearance and importance within the computer science landscape.

Lehtinen’s algorithm for solving parity games. The major break-

through in the quest for a polynomial-time algorithm for parity games was achieved

by Calude, Jain, Khoussainov, Li, and Stephan [CJK
+

17], who gave the first quasi-

polynomial algorithm. Other quasi-polynomial algorithms have been developed soon

after by Jurdziński and Lazić [JL17], and Lehtinen [LB20], and by Fearnley et

al. [FJdK
+

19].

Lehtinen’s algorithm provides a new parameter for parity games: the register

number. She further argued that games of bounded register number can be solved

in polynomial time. It was known that if the underlying graphs have bounded tree-
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width [Obd03, FL11, Gan15, Sta23], clique-width [Obd07], DAG-width [BDHK06],

Kelly-width [HK07] and entanglement [BG04], the same holds. We make two re-

marks here, the first is that solving parity games is not in FPT for any of the above

parameters and the second remark—also made by Lehtinen—is that none of the

other parameters on the underlying graph co-incide with the register number of

parity games.

Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, and Parys [CDF
+

19] intro-

duced the concepts of universal trees and separating automata, and argued that all

the aforementioned quasi-polynomial algorithms were intimately linked to them. Cz-

erwiński et. al’s lower bound argument on Lehtinen’s algorithm varies from the oth-

ers. This can be attributed to Lehtinen’s algorithm producing a non-deterministic

parity automaton as a separating automaton as opposed to a deterministic safety

automaton of the other algorithms. The lowerbound is obtained indirectly by argu-

ing that the safety automaton that can be derived from a non-determinisitc parity

automaton with some good-for-separation properties has the lower bound induced

by universal trees.

Parys [Par20] has tried to reconcile this difference as well as offered some

running-time improvements to Lehtinen’s algorithm, but it remains significantly

worse than the bounds of Jurdziński and Lazić [JL17], as well as its Fearnley, Jain, de

Keijzer, Schewe, Stephan, and Wojtczak [FJdK
+

19], and the improvements proposed

by Dell’Erba and Schewe [DS22] as Lehtinen’s algorithm always requires at least

quasi-polynomial working space. Moreover, Parys [Par20]’s proposed method to

improve the runtime of Lehtinen’s algorithm re-defines the register game introduced

by Lehtinen and restricts the strategies of one player to “positional” strategies.

Our Contributions. This chapter contains work published by Daviaud

and Jurdziński and the author in 2020 [DJT20]. Here, we propose the Strahler

number as a parameter that measures the structural complexity of dominia in a

parity game and that governs the computational complexity of the most efficient

algorithms currently known for solving parity games. We establish that the Strahler

number is a robust, and hence natural, parameter by proving that it coincides with

its version based on trees of progress measures and with the register number defined

by Lehtinen [Leh18, LB20].

In this chapter, we give a natural characterisation of Lehtinen’s register num-

ber in terms of attractor decompositions and its trees. We recall verbatim the

definition of an attractor decomposition here for ease of reference.
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Attractor Decompositions. If G is a parity game in which all priorities do not

exceed a non-negative even number d then we say that

A = ⟨A, (S1,A1, A1), . . . , (S`,A`, A`)⟩

is a Steven d-attractor decomposition [DJL18, DJL19] of G if:

• A is the Steven attractor to the (possibly empty) set of vertices of priority d

in G;

and setting G1 = G \A, for all i = 1, 2, . . . , `, we have:

• Si is a non-empty trap for Audrey in Gi in which every vertex priority is at

most d − 2;

• Ai is a Steven (d − 2)-attractor decomposition of subgame G ∩ Si;

• Ai is the Steven attractor to Si in Gi;

• Gi+1 = Gi \Ai;

and the game G`+1 is empty. If d = 0 then we require that ` = 0.

Recall that if d is even and

A = ⟨A, (S1,A1, A1), . . . , (S`,A`, A`)⟩

is a Steven d-attractor decomposition then we define the tree of attractor decompo-

sition A, denoted by TA, to be the trivial ordered tree ⟨⟩ if ` = 0, and otherwise, to

be the ordered tree ⟨TA1
, TA2

, . . . , TA`
⟩, where for every i = 1, 2, . . . , `, tree TAi

is

the tree of attractor decomposition Ai.

Strahler Numbers of an Ordered Tree. The Strahler number Str (T )
of a tree T is defined to be the largest height of a perfect binary tree that is a minor

of T . Alternatively, it can be defined by the following structural induction: the

Strahler number of the trivial tree ⟨⟩ = ◦ is 1; and if T = ⟨T1, . . . , T`⟩ and s is the

largest Strahler number of trees T1, . . . , T`, then Str (T ) = s if there is a unique i

such that Str (Ti) = s, and Str (T ) = s + 1 otherwise. Recall that we denote the

trivial tree with one node ⟨⟩ by ◦. For example, we have

Str (⟨⟨◦3⟩ ,◦4, ⟨⟨◦⟩⟩2⟩) = 2

because Str (◦) = Str (⟨⟨◦⟩⟩) = 1 and Str (⟨◦3⟩) = 2.
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Proposition 4.0.1. For every (n, h)-small tree T , we have Str (T ) ⩽ h and Str (T ) ⩽
⌊lg n⌋ + 1.

Strahler number of a parity game. We define the Strahler number of an at-

tractor decomposition A, denoted by Str (A), to be the Strahler number Str (TA) of

its tree TA. We define the Strahler number of a parity game to be the maximum of

the smallest Strahler numbers of attractor decompositions of the largest Steven and

Audrey dominions, respectively.

4.1 Strahler number bounds register number

In this section, we establish a connection between the register number of a parity

game defined by Lehtinen [Leh18] and the Strahler number thus defined. Moreover,

we argue that from every Steven attractor decomposition of Strahler number k, we

can derive a dominion strategy for Steven in the k-register game. Once we establish

the Strahler number upper bound on the register number, we are faced with the

following two natural questions:

Question 4.1.1. Do the Strahler and the register numbers coincide?

Question 4.1.2. Can the relationship between Strahler and register numbers be

exploited algorithmically, in particular, to improve the running time and space com-

plexity of solving register games studied by Lehtinen [Leh18] and Parys [Par20]?

In Chapters 4 and 5 we answer them both positively (Lemma 4.1.3 and

Theorem B, and Theorem C, respectively).

For every positive number k, a Steven k-register game on a parity game G is

another parity game Rk(G) whose vertices, edges, and priorities will be referred

to as states, moves, and ranks, respectively, for disambiguation. The states of

the Steven k-register game on G are either pairs (v, ⟨rk, rk−1, . . . , r1⟩) or triples

(v, ⟨rk, rk−1, . . . , r1⟩ , p), where v is a vertex in G, d ⩾ rk ⩾ rk−1 ⩾ ⋯ ⩾ r1 ⩾ 0, and

1 ⩽ p ⩽ 2k + 1. The former states have rank 1 and the latter have rank p. Each

number ri, for i = k, k−1, . . . , 1, is referred to as the value of the i-th register in the

state. Steven owns all states (v, ⟨rk, rk−1, . . . , r1⟩) and the owner of vertex v in G is

the owner of states (v, ⟨rk, rk−1, . . . , r1⟩ , p) for every p. How the game is played by

Steven and Audrey is determined by the available moves:

• at every state (v, ⟨rk, rk−1, . . . , r1⟩), Steven picks i, such that 0 ⩽ i ⩽ k, and re-

sets registers i, i−1, i−2, . . . , 1, leading to state (v, ⟨r′k, . . . , r′i+1, r′i, 0, . . . , 0⟩ , p)
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of rank p and with updated register values, where:

p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2i if i ⩾ 1 and max (ri, π(v)) is even,

2i + 1 if i = 0, or if i ⩾ 1 and max (ri, π(v)) is odd;

r
′
j = max(rj , π(v)) for j ⩾ i + 1, and r

′
i = π(v);

• at every state (v, ⟨rk, rk−1, . . . , r1⟩ , p), the owner of vertex v in G picks an edge

(v, u) in G, leading to state (u, ⟨rk, rk−1, . . . , r1⟩) of rank 1 and with unchanged

register values.

For example, at state (v, ⟨9, 6, 4, 4, 3⟩) of rank 1, if the priority π(v) of vertex v is 5

and Steven picks i = 3, this leads to state (v, ⟨9, 6, 5, 0, 0⟩ , 7) of rank 2i + 1 = 7

because max(r3, π(v)) = max(4, 5) = 5 is odd, r
′
4 = max(r4, π(v)) = max(6, 5) = 6,

and r
′
3 = π(v) = 5.

Observe that the first components of states on every cycle in game Rk(G)
form a (not necessarily simple) cycle in parity game G; we call it the cycle in G
induced by the cycle in Rk(G). If a cycle in Rk(G) is even (that is, the highest

state rank on it is even) then the induced cycle in G is also even. Lehtinen [Leh18,

Lemmas 3.3 and 3.4] has shown that a vertex v is in the largest Steven dominion in G
if and only if there is a positive integer k such that a state (v, r), for some register

values r is in the largest Steven dominion in Rk(G). Lehtinen and Boker [LB20,

a comment after Definition 3.1] have further clarified that for every k, if a player

has a dominion strategy in Rk(G) from a state whose first component is a vertex v

in G, then they also have a dominion strategy in Rk(G) from every state whose first

component is v. This allows us to say without loss of rigour that a vertex v in G is

in a dominion in Rk(G).
By defining the (Steven) register number [Leh18, Definition 3.5] of a parity

game G to be the smallest number k such that all vertices v in the largest Steven

dominion in G are in a Steven dominion in Rk(G), and by proving the 1 + lg n

upper bound on the register number of every (n, d)-small parity game [Leh18, The-

orem 4.7], Lehtinen has contributed a novel quasi-polynomial algorithm for solv-

ing parity games, adding to those by Calude et al. [CJK
+

17] and Jurdziński and

Lazić [JL17].

Lehtinen [Leh18, Definition 4.8] has also considered the concept of a Steven

defensive dominion strategy in a k-register game (for brevity, we call it a k-defensive

strategy): it is a Steven dominion strategy on a set of states in Rk(G) in which there

is no state of rank 2k + 1. Alternatively, the same concept can be formalised by
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defining the defensive k-register game Dk(G), which is played exactly like the k-

register game Rk(G), but in which Audrey can also win just by reaching a state of

rank 2k + 1. Note that the game Dk(G) can be thought of as having the winning

criterion for Steven as being a conjunction of a parity and a safety criteria, and the

winning criterion for Audrey as a disjunction of a parity and a reachability criteria.

Routine arguements allow to extend positional determinacy from parity games to

such games with combinations of parity, and safety or reachability winning criteria.

We follow Lehtinen [Leh18, Definition 4.9] by defining the (Steven) defensive

register number of a Steven dominion D in G as the smallest number k such that

Steven has a defensive dominion strategy in Rk(G) on a set of states that includes

all (v, ⟨rk, . . . , r1⟩) for v ∈ D, and such that rk is an even number at least as large

as every vertex priority in D. We propose to call it the Lehtinen number of a Steven

dominion in G to honour Lehtinen’s insight that led to this concept. We also define

the Lehtinen number of a vertex in G to be the smallest Lehtinen number of a

Steven dominion in G that includes the vertex, and the Lehtinen number of a parity

game as the Lehtinen number of its largest Steven dominion. We also note that the

register and the Lehtinen numbers of a parity game nearly coincide (they differ by

at most one), and hence the conclusions of our analysis of the latter also apply to

the former.

Lemma 4.1.3. The Lehtinen number of a parity game is no larger than its Strahler

number.

The arguments used in our proof of this lemma are similar to those used

in the proof of the main result of Lehtinen [Leh18, Theorem 4.7]. Similar results

also appears in the author’s Master’s thesis [The19], which shows that the Strahler

number of a progress measure tree bounds the Lehtinen number. However, we pro-

vide a similar statement using attractor decompositions instead. Our contribution

here is to pinpoint the Strahler number of an attractor decomposition as the struc-

tural parameter of a dominion that naturally bounds the number of registers used

in Lehtinen’s construction of a defensive dominion strategy.

Proof of Lemma 4.1.3. Consider a parity game G and let d be the least even integer

no smaller than any of the priority in G. Consider a Steven d-attractor decompo-

sition A of G of Strahler number k. We construct a defensive k-register strategy

for Steven on Rk(G). The strategy is defined inductively on the height of TA,

and has the additional property of being G-positional in the following sense: if

((v, ⟨rk, . . . , r1⟩) , (v, ⟨r′k, . . . , r′1⟩ , p)) is a move then the register reset by Steven

only depends on v, not on the values in the registers. Similarly, if the move

47



((v, ⟨rk, . . . , r1⟩ , p) , (u, ⟨rk, . . . , r1⟩)) is such that v is owned by Steven, u only de-

pends on v and not on the values of the registers or p.

Strategy for Steven. If A = ⟨A⟩, then G is exactly the set of vertices

of priority d and of its Steven attractor. In this case, Steven follows the strategy

induced by the reachability strategy in A to the set of vertices of priority d, only

resetting register r1 immediately after visiting a state with first component a vertex

of priority d in G. More precisely, the Steven defensive strategy is defined with the

following moves:

• ((v, ⟨r1⟩) , (v, ⟨r1⟩ , 1)) if v is not a vertex of priority d in G;

• ((v, ⟨r1⟩) , (v, ⟨r′1⟩ , 2)) if v is a vertex of priority d in G and r
′
1 = max(r1, d)

is even;

• ((v, ⟨r1⟩) , (v, ⟨r′1⟩ , 3)) if v is a vertex of priority d in G and r
′
1 = max(r1, d)

is odd (we state this case for completeness but this will never occur);

• ((v, ⟨r1⟩ , p) , (u, ⟨r1⟩)) where (v, u) belongs to the Steven reachability strategy

from A to the set of vertices of priority d in G.

Note that this strategy is G-positional.

Suppose now that A = ⟨A, (S1,A1, A1), . . . , (S`,A`, A`)⟩ and that it has

Strahler number k. For all i = 1, 2, . . . , `, let ki be the Strahler number of Ai.

By induction, for all i, we have a Steven defensive ki-register strategy σi, which

is (G ∩ Si)-positional, on a set of states Ωi in Rki(G ∩ Si) including all the states

(v, ⟨rki , . . . , r1⟩) for v ∈ Si and rki an even number at least as large as every ver-

tex priority in Si. Let Γi be the set of states in Rk(G ∩ Si) defined as all the

states (v, ⟨d, rk−1, . . . , r1⟩) for v ∈ Si if ki ≠ k and as the union of the states

(v, ⟨d, rk−1, . . . , r1⟩) for v ∈ Si and Ωi, otherwise.

The strategy σi induces a strategy on Γi in Rk(G ∩ Si) by simply ignor-

ing registers rki+1, . . . , rk, and using (G ∩ Si)-positionality to define moves from

the states not in Ωi. More precisely, in a state (v, ⟨rk, . . . , r1⟩), Steven resets reg-

ister j if and only if register j is reset in a state (v, ⟨r′ki , . . . , r
′
1⟩) of Ωi accord-

ing to σi. This is well defined by (G ∩ Si)-positionality. Similarly, we add moves

((v, ⟨rk, . . . , r1⟩ , p) , (u, ⟨rk, . . . , r1⟩)) to the strategy if and only if there is a move

((v, ⟨r′ki , . . . , r
′
1⟩ , p′) , (u, ⟨r′ki , . . . , r

′
1⟩)) in σi. This is again well-defined by (G∩Si)-

positionality.

This strategy is denoted by τi. Note that τi is a defensive k-register strategy

on Γi, which is G-positional.
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The Steven defensive strategy in Rk(G) is defined by the following moves,

where S denotes the set of vertices of priority d in G:

• On the set of states with first component a vertex of Si, the moves are given

by τi.

• On the set of states with first component a vertex of Ai \ Si, Steven uses the

strategy induced by the reachability strategy from Ai to Si, without resetting

any registers.

• On Rk(G ∩ (A \ S)), Steven uses the strategy induced by the reachability

strategy from A to S, without resetting any registers.

• On the set of states with first component a vertex of S,

– ((v, ⟨rk, . . . , r1⟩) , (v, ⟨d, 0, . . . , 0⟩ , p)) where v is a vertex in S and p = 2k

if max(rk, d) is even and p = 2k + 1 otherwise.

– ((v, ⟨rk, . . . , r1⟩ , p) , (u, ⟨rk, . . . , r1⟩)) for some uniquely chosen u such

that (v, u) in E if v is owned by Steven and for all u such that (v, u) in

E if v is owned by Audrey.

Observe that this strategy is G-positional.

Correctness of the Strategy. We prove now that the strategy defined

above is indeed a defensive k-register strategy. We proceed by induction on the

height of TA and define a set of states Γ, including all the states (v, ⟨d, rk−1, . . . , r1⟩)
such that v is a vertex of G.

Base Case: If the height of TA is 1 and A = ⟨A⟩, let Γ be the set of states

(v, ⟨r1⟩) and (v, ⟨r1⟩ , p) with v a vertex of G, 1 ⩽ r1 ⩽ d and p being either 1 or 2.

It is easy to see that the strategy defined above is a defensive dominion strategy on

this set.

Inductive step: If A = ⟨A, (S1,A1, A1), . . . , (S`,A`, A`)⟩ with Strahler num-

ber k and ki being the Strahler number of Ai for all i (note that ki ⩽ k for all i,

and by definition of Strahler number, there is at most one m such that km = k),

we define Γ to be the set comprising the union of the Γi and all the states of the

form (v, ⟨rk, . . . , r1⟩) and (v, ⟨rk, . . . , r1⟩ , p) with v a vertex of (Ai \ Si) ∪ A and

1 ⩽ p ⩽ 2k.

Case 1: For each i, ki < k.

We first show that Γ is a trap for Audrey for the strategy defined above,

showing that rank 2k+ 1 can never be reached (implying that the strategy is defen-

sive). This comes from the fact that the register of rank k is only reset in a state

49



(v, ⟨rk, . . . , r1⟩) with v in S. Since max(rk, d) = d is even then this leads to a state

(v, ⟨d, 0, . . . , 0⟩ , 2k). Otherwise, register k is never reset, so a state with rank 2k+1

cannot be reached.

Consider now any cycle in Rk(G) with moves restricted to the strategy con-

structed above. If this cycle contains a state whose first component is a vertex of S,

then as explained above, the highest rank in the cycle is 2k. Otherwise, the cycle is

necessarily in Rk(G ∩ Si) for some i. By induction, τi is winning and so the cycle

is even.

Case 2: There is a unique m such that km = k.

We first show that a state of rank 2k + 1 is never reached. Observe that

register k is reset in two places: (1) immediately after a state with first component

a vertex of S is visited, (2) if register k is reset by τm. In the first case, similarly as

shown above, a state of rank 2k is reached. In the second case, register k is either

reset in a state (v, ⟨d, rk−1, . . . , r1⟩), and similarly as above, a state of rank 2k is

reached, or in a state of Ωi. In this case, as τi is defensive on Ωi by induction, a

state of rank 2k + 1 cannot be reached, and the highest rank that can be reached is

2k.

Proving that every cycle is even is similar to the previous case.

4.2 Strahler number is bounded by register number

In this section we prove that every parity game whose Lehtinen number is k has an

attractor decomposition of Strahler number at most k. In other words, we establish

the Lehtinen number upper bound on the Strahler number, which together with

Lemma 4.1.3 provides a positive answer to Question 4.1.1 in the theorem below.

Theorem B. The Strahler number of a parity game is equal to its Lehtinen number.

When talking about strategies in parity games, we only considered positional

strategies, for which it was sufficient to verify the parity criterion on (simple) cycles.

Instead, we explicitly consider the parity criterion on infinite paths here, which we

find more convenient to establish properties of Audrey strategies in the proof of

Theorem B.

First, we introduce the concepts of tight and offensively optimal attractor

decompositions.

Definition 4.2.1. A Steven d-attractor decomposition A of G is tight if Audrey

has a winning strategy from at least one state in DStr(A)−1(G) in which the value of

register Str (A) − 1 is d.
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By definition, the existence of a tight Steven d-attractor decomposition on a

parity game implies that the Lehtinen number of the game is at least its Strahler

number, from which Theorem B follows. Offensive optimality of an attractor de-

composition, the concept we define next, may seem less natural and more technical

than tightness, but it facilitates our proof that every game has a tight attractor

decomposition.

Definition 4.2.2. Let A = ⟨A, (S1,A1, A1), . . . , (S`,A`, A`)⟩ be a Steven d-attractor

decomposition, let games Gi for i = 1, 2, . . . , ` be as in the definition of an attrac-

tor decomposition, let A
′
i be the Audrey attractor of the set of vertices of priority

d − 1 in Gi, and let G ′i = Gi \ A′i. We say that A is offensively optimal if for every

i = 1, 2, . . . , `, we have:

• Audrey has a dominion strategy on DStr(Ai)−1(G ′i);

• Audrey has a dominion strategy on DStr(Ai)(G ′i \ Si).

Proving that every offensively optimal Steven attractor decomposition is tight

(Lemma 4.2.5), and that every Steven dominion in a parity game has an offensively

optimal Steven attractor decomposition (Lemma 4.2.6), will complete the proof of

Theorem B. We first give two propositions that will be useful in the proofs.

Proposition 4.2.3. For every parity game G and non negative integer k, if Audrey

has a dominion strategy from every state of Dk(G) then Audrey has a dominion

strategy on Rk(G).

Proof. For every state s of Dk(G), Audrey has a winning strategy τs on Dk(G)
starting in s. We construct a dominion strategy for her on Rk(G): after every visit

to a state of rank 2k+ 1, Audrey follows τs, where s is the first state that follows on

the path and whose rank is smaller than 2k + 1. This defines a dominion strategy

on Rk(G).

Proposition 4.2.4. If A = ⟨A, (S1,A1, A1), . . . , (S`,A`, A`)⟩ is an offensively opti-

mal Steven d-attractor decomposition, then for every i = 1, 2, . . . , `, Audrey has a do-

minion strategy on RStr(Ai)−1(Gi) (and also a dominion strategy on DStr(Ai)−1(Gi)).

Proof. Let i in {1, 2, . . . , `}. Consider the following strategy in DStr(Ai)−1(Gi):

• On the set of states whose vertex components are in A
′
i, Audrey follows a

strategy induced by the reachability strategy in A
′
i to a vertex of priority d−1

(picking any move if v is of priority d − 1);
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• In states whose vertex component is in G ′i, Audrey plays a (k − 1)-register

dominion strategy on DStr(Ai)−1(G ′i). Such a strategy exists by the definition

of offensive optimality.

This strategy is indeed an Audrey dominion strategy on DStr(Ai)−1(Gi), because any

play either visits a state whose first component is a vertex in A
′
i infinitely often, or

it eventually remains in DStr(Ai)−1(G ′i). In the former case, the play visits a state

whose first component is a vertex of priority d−1 infinitely often. In the latter case,

the strategy is a dominion strategy on DStr(Ai)−1(G ′i).

Finally, we use Proposition 4.2.3 to turn this Audrey dominion strategy

on DStr(Ai)−1(Gi) into an Audrey dominion strategy on RStr(Ai)−1(Gi).

Lemma 4.2.5. Every offensively optimal Steven attractor decomposition is tight.

Proof. Let the attractor decomposition A = ⟨A, (S1,A1, A1), . . . , (S`,A`, A`)⟩ be an

offensively optimal d-attractor decomposition of a parity game and let k = Str (A).
We construct a strategy for Audrey in Dk−1(G) that is winning for her from at

least one state in which the value of register k − 1 is d. We define G ′i and A
′
i as in

Definition 4.2.2.

Case 1: Str (Ai) = k for some unique i in {1, . . . , `}. In this case, we show

that Audrey has a dominion strategy on Dk−1(Gi). Since Gi is a trap for Steven

in G, this gives the desired result. This directly follows from Proposition 4.2.4.

Case 2: There are 1 ⩽ i < j ⩽ ` such that Str (Ai) = Str (Aj) = k − 1. We

construct a strategy for Audrey in Dk−1(G) that is winning for her from all states

in Gj whose register k−1 has value d. Firstly, since A is offensively optimal, Audrey

has a dominion strategy on Dk−1(G ′i \ Si), denoted by τi, and a dominion strategy

on Rk−2(G ′i), denoted by τ
′
i. Moreover, by Proposition 4.2.4, we have that Audrey

has a dominion strategy, denoted by τj , on Rk−2(Gj) (note that Gj is a trap for

Steven in G). Consider the following strategy for Audrey in Dk−1(G), starting from

a state whose vertex component is in Gj and register k − 1 has value d:

• As long as the value of register k − 1 is larger than d − 1, Audrey follows the

strategy induced by τj , while ignoring the value of register k − 1.

• If the value in register k − 1 is at most d − 1:

– In states whose vertex component is in A
′
i, Audrey follows a strategy

induced by the reachability strategy from A
′
i to a vertex of priority d− 1

(picking any move if the vertex has priority d − 1);
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– In states whose vertex component is in G ′i \ Si and whose register k − 2

has value at most d − 2, Audrey follows τi;

– In states whose vertex component is in G ′i and whose register k − 1 has

value d−1, Audrey follows the strategy induced by τ
′
i, while ignoring the

value of regiser k − 1.

Audrey plays any move if none of the above applies.

We argue that this strategy is winning for Audrey in Dk−1(G) from states

whose vertex component is in Gj and register k− 1 has value d. Consider an infinite

path that starts in such a state. As long as register k − 1 has value d, Audrey

follows τj . If Steven never resets register k − 1 then Audrey wins. Otherwise, once

register k − 1 has been reset, its value is at most d − 1. Note that Gj is included in

A
′
i ∪ (G ′i \ Si). If register k − 1 has a value smaller than d − 1, and the play never

visits a state whose vertex component is in A
′
i, then Audrey has followed τi along

the play (she has never left G ′i \ Si as the only way for Steven to go out G ′i \ Si is

to go to A
′
i) and wins. Otherwise, the play visits a state whose vertex component

is in A
′
i, and so it visits a state whose vertex component has priority d − 1, leading

to a state in which register k − 1 has value d − 1. Finally, if a state whose vertex

component is in A
′
i is visited infinitely many times then Audrey wins. Otherwise,

Audrey eventually plays according to τ
′
i. If Steven never resets register k − 1 then

Audrey wins. Otherwise, if Steven resets register k − 1, which at this point has

value d − 1, a state of rank 2k − 1 is visited and Audrey wins.

Lemma 4.2.6. Every Steven dominion in a parity game has an offensively optimal

Steven attractor decomposition.

Proof. Consider a parity game G whose vertices form a Steven dominion. Let k be

the Lehtinen number of G and let d be the largest even value such that π
−1({d, d−

1}) ≠ ∅. We construct an offensively optimal Steven attractor decomposition by

induction.

If d = 0, it is enough to consider ⟨A⟩, where A is the set of all vertices in G.

If d > 1, let A be the Steven attractor of the set of vertices of priority

d in G. Let G0 = G \ A. If G0 = ∅ then ⟨A⟩ is an offensively optimal Steven

attractor decomposition for G. Otherwise, G0 is a non-empty trap for Steven in G
and therefore G0 has a Lehtinen number at most k. Let A

′
be the Audrey attractor

of all the vertices of priority d − 1 in the sub-game G0 and let G ′0 = G0 \A′.
Given a positive integer b, let L

b
be the largest dominion in G ′0 such that

Steven has a dominion strategy on Db(G ′0). We define m to be the smallest number

such that L
m
≠ ∅ and let S0 = L

m
. We show that m ⩽ k. To prove this, we
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construct an Audrey dominion strategy on Db(G0) for all b such that L
b
= ∅. Since

the Lehtinen number of G0 is at most k, this implies that m ⩽ k. The Audrey

dominion strategy on Db(G0), assuming L
b
= ∅, is as follows

• if the vertex component of a state is in A
′
then Audrey uses the strategy in A

′

induced by the reachability strategy to vertices of priority d − 1;

• if the vertex component of a state is in G ′0 then Audrey uses her dominion

strategy on Db(G ′0), which exists because the Steven dominion L
b

in Db(G ′0)
is empty.

Any play following the strategy defined above and visiting infinitely often a state

of Db(G0 ∩A
′) is winning for Audrey. A play following the above strategy and

remaining eventually in Db(G ′0) is also winning for Audrey.

Let A0 be the (d − 2)-attractor decomposition of S0 obtained by induction.

In particular, A0 is offensively optimal.

Let A0 be the Steven attractor to S0 in G0 and let G1 = G0 \A0. Subgame G1

is a trap for Steven and therefore it is a Steven dominion. Consider an offensively

optimal Steven d-attractor decomposition A′
= ⟨∅, (S1,A1, A1), . . . , (S`,A`, A`)⟩ of

G1 obtained by induction.

We claim that A = ⟨A, (S0,A0, A0), (S1,A1, A1), . . . , (S`,A`, A`)⟩ is an of-

fensively optimal Steven d-attractor decomposition of G. Since A′
is offensively

optimal, it is enough to show that:

• Audrey has a dominion strategy on DStr(A0)−1(G ′0),

• Audrey has a dominion strategy on DStr(A0)(G ′0 \ S0).

Since A0 is offensively optimal, Audrey has a winning strategy from at least

one state in DStr(A0)−1(S0), by Lemma 4.2.5, and hence m ⩾ Str (A0).
So, by choice of m, Steven does not have a defensive dominion strategy on

DStr(A0)−1(G ′0) from any state. This means that Audrey has a dominion strategy

on DStr(A0)−1(G ′0).

Moreover, by construction of S0, Audrey has a dominion strategy on the

subgame Dm(G ′0 \ S0). This implies that Audrey has a dominion strategy on the

subgame DStr(A0)(G ′0 \ S0).

4.3 Strahler number of progress measures

Consider a parity game G in which all vertex priorities are at most an even number d.
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If (L,⩽) is a well-founded linear order then we write sequences in Ld/2 in

the following form ⟨md−1,md−3, . . . ,m1⟩, and for every priority p ∈ { 0, 1, . . . , d }, we

define the p-truncation of ⟨md−1,md−3, . . . ,m1⟩, denoted by ⟨md−1,md−3, . . . ,m1⟩∣p,
to be the sequence ⟨md−1, . . . ,mp+2,mp⟩ if p is odd and ⟨md−1, . . . ,mp+3,mp+1⟩ if p

is even. We use the lexicographic order ⩽lex to linearly order the set L∗ = ⋃∞
i=0 L

i
.

A Steven progress measure [EJ91, Jur00, JL17] on a parity game G is a map

µ ∶ V → Ld/2 such that for every vertex v ∈ V :

• if v ∈ VEven then there is a µ-progressive edge (v, u) ∈ E;

• if v ∈ VOdd then every edge (v, u) ∈ E is µ-progressive;

where we say that an edge (v, u) ∈ E is µ-progressive if:

• if π(v) is even then µ(v)∣π(v) ⩾lex µ(u)∣π(v);

• if π(v) is odd then µ(v)∣π(v) >lex µ(u)∣π(v).

We define the tree of a progress measure µ to be the ordered tree generated by the

image of V under µ.

Theorem 4.3.1 ([EJ91, Jur00, JL17]). There is a Steven progress measure on a

parity game G if and only if every vertex in G is in its largest Steven dominion. If

game G is (n, d)-small then the tree of a progress measure on G is (n, d/2+1)-small.

We define the Steven progress-measure Strahler number of a parity game G
to be the smallest Strahler number of a tree of a progress measure on G. The

following theorem refines and strengthens Theorems 2.0.3 and 4.3.1 by establishing

that the Steven Strahler number and the Steven progress-measure Strahler number

of a parity game nearly coincide.

Theorem 4.3.2. The Steven Strahler number and the Steven progress-measure

Strahler number of a parity game differ by at most 1.

The translations between progress measures and attractor decompositions

that are used in the proof are as given by Daviaud, Jurdziński, and Lazić [DJL18];

here we point out that they do not increase the Strahler number of the underlying

trees by more than 1.

Proof of Theorem 4.3.2. Let G be a (n, d)-small parity game. To prove Theo-

rem 4.3.2 we will prove the following two lemmas.
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Lemma 4.3.3. If G is a parity game where all the vertices belong to Audrey and

G has a Steven attractor decomposition of Strahler number k, then it has a Steven

progress measure of Strahler number at most k + 1.

Proof. Let G be a parity game where all the vertices belong to Audrey. The proof

is by induction on the height of the tree of a Steven attractor decomposition of G.

Inductive statement. Given a d-attractor decomposition A of G and its

tree TA of height h, there is a progress measure tree T of height h and an embedding

f from TA to T such that all the nodes of T which are not in the image of f are

leaves.

Base case. If the height of T is at most 1, then the d-attractor decompo-

sition is ⟨A⟩. Let C be the set of vertices, which do not have priority d. Consider

the topological order: u < v if there is a path from v to u in A. We consider the

tree ⟨◦∣C∣⟩ and µ, which maps the vertices of priority d to its root and the vertices

in C to leaves, respecting the topological order, i.e. if u < v then u is mapped to

a node that is a larger sibling of the node v is mapped to. This defines a progress

measure of Strahler number at most 2.

Induction step. Consider a Steven-d-attractor decomposition:

A = ⟨A, (S1,A1, A1), . . . , (Sj ,Aj , Aj)⟩ .

Let TAi
be the tree of Ai and Gi as defined in the definition of an attractor decom-

position.

Inductively, for all i, there is a progress measure tree Ti (and an associated

progress measure mapping µi) of the same height as TAi
and an embedding fi from

TAi
to Ti such that all the nodes of Ti which are not in the image of fi are leaves.

Let us construct a progress measure tree for G as follows. Let Ci = Ai \ Si
for each i and C be the set of nodes in A that have priority at most d − 1. Set:

T = ⟨◦∣C∣
, T1,◦

∣C1∣, . . . , Tj ,◦
∣Cj∣⟩ .

Set µ to be a mapping from the set of vertices of G to the nodes of T , which

extends µi on vertices in Si, maps the vertices of priority d to the root of the tree,

the vertices in C to the first ∣C∣ children of the root and the vertices in Ci to the

corresponding ∣Ci∣ children of the root which respects the topological ordering in G
as viewed as a graph, i.e. if for vertices u and v in C, resp. Ci, there is a path from
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u to v in C, resp. Ci, then u is mapped to a node that appears on the right of the

node v is mapped to.

By construction and induction hypothesis, the tree T embeds TA and the

only nodes that are not images of nodes in TA are leaves. Moreover, T is a progress

measure tree with mapping µ by induction hypothesis and the construction, which

is compatible with the Steven reachability strategy on A and the Ai’s.

The lemma follows from the fact that the Strahler number of a tree increases

by at most 1 when leaves are added to it.

Lemma 4.3.4. If G has a Steven progress measure of Strahler number k, then it

has a Steven attractor decomposition of Strahler number at most k.

Proof. We will prove the following by induction, which proves the lemma:

Inductive statement. Given an (n, d)-small parity game G where d is

even and a progress measure tree T on G, there exist a Steven attractor decompo-

sition whose tree embeds in T .

Remark 1. Given a progress measure mapping µ on G and its corresponding progress

measure tree T , and given a trap R for Audrey in G, the restriction of µ to the ver-

tices in R is a progress measure with the tree induced by the nodes images of the

vertices of R by µ.

Base case. For games with one vertex, any progress measure tree on G
and any tree of a Steven attractor decomposition are ⟨⟩. Therefore the induction

hypothesis is satisfied.

Induction step. Let G be an (n, d)-small parity game where d is the least

even integer no smaller than any priority in G and let T be a progress measure tree

on G.

Case 1: If the highest priority in G is even and equal to d. Let A be the Steven

attractor of the set of vertices of priority d. Let G ′ = G \ A. As G ′ is a trap for

Audrey in G, the tree T ′
induced by the nodes images of the vertices in G ′ in T is a

progress measure tree of G ′. By induction hypotheses, there exist a Steven attractor

decomposition A of G ′ whose tree TA embeds in T ′
. By appending A to A, one gets

a Steven attractor decomposition of G of same tree TA, which then embeds in T .

Case 2: If the highest priority in G is odd and equal to d − 1.
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No vertex is mapped to the root in the progress measure tree T . Let

T0, T1, . . . , Tj be the subtrees, children of the root of T . Let us note that vertices of

priority d− 1 cannot be mapped to nodes in T0 as they would not have progressive

outgoing edges if that was the case. Let S0 be the set of vertices mapped to nodes

in T0 and let A0 be the Steven attractor of S0 in G. We can assume that S0 is

non-empty (otherwise we remove T0 from T and start again).

Let G ′ = G \ A0. As G ′ is a subgame, trap for Audrey, the tree T ′
with sub-

trees T1, . . . , Tj is a progress measure tree on G ′. By induction, one gets a Steven

attractor decomposition:

A′
= ⟨∅, (S1,A1, A1), . . . , (Sj ,Aj , Aj)⟩

whose tree embeds in T ′
.

Now, let us prove that S0 is a trap for Audrey. Let u be in S0 and v be one

of its successor. For (u, v) to be progressive, v has to be mapped to a node in T0
and is then in S0. Since there is always an outgoing progressive edge for Steven’s

vertices and all edges of Audrey’s vertices are progressive, we can conclude that S0

is a trap for Audrey, is a sub-game, and T0 is a progress measure tree on it. By

induction, one gets a Steven attractor decomposition A0 of S0, whose tree embeds

in T0.
We have proved that:

A = ⟨∅, (S0,A0, A1), (S1,A1, A1), . . . , (Sj ,Aj , Aj)⟩

is a Steven attractor decomposition of G whose tree embeds in T .

Lemma 4.3.4 gives one direction of the theorem. For the reverse direction,

consider G a parity game and A a Steven attractor decomposition of Strahler number

k. This decomposition induces a winning strategy for Steven (with exactly one edge

going out of any vertex owned by Steven in G). Consider the restriction of G to this

Steven strategy. This is a game where all the vertices belong to Audrey, and which

has A as a Steven attractor decomposition. We can apply Lemma 4.3.4 and obtain

a Steven progress measure of Strahler number at most k+ 1. The progress measure

thus obtained is also a progress measure of G, which concludes the proof.
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Chapter 5

Strahler universal trees

Having established the equivalence of the Strahler number of a parity game to its

Lehtinen number, we shift our attention to tackle Question 4.1.2, which asks if the

space complexity of solving register games by Lehtinen [LB20] and Parys [Par20]

can be improved.

We give a construction of small Strahler-universal trees that, when used with

the progress measure lifting algorithm of Jurdziński and Lazić [Jur00, JL17] or with

the Jurdziński-Morvan algorithm [JMT22], yields algorithms that work in quasi-

linear space (linear if we exclude poly-logarithmic factors) and quasi-polynomial

time. Moreover, usage of our small Strahler-universal trees allows to solve parity

games in polynomial time for a wider range of asymptotic settings of the two natural

structural complexity parameters (number of priorities d and the Strahler/register

number k) than previously known, and that covers as special cases the k = O(1)
criterion of Lehtinen [Leh18] and the d < lg n and d = O(log n) criteriaof Calude et

al. [CJK
+

17], and of Jurdziński and Lazić [JL17], respectively.

Our approach is to develop constructions of small ordered trees into which

trees of attractor decompositions or of progress measures can be embedded. Such

trees can be seen as natural search spaces for dominion strategies, and existing meta-

algorithms such as the Jurdziński-Morvan [JMT22] algorithm and progress measure

lifting algorithm [Jur00, JL17] can use them to guide their search, performed in time

proportional to the size of the trees in the worst case.

Recall that an ordered tree is universal for a class of trees if all trees from

the class can be embedded into it. The innovation offered in this chapter is to

develop optimised constructions of trees that are universal for classes of trees whose

complex structural parameter, such as the Strahler number, is bounded. This is in

contrast to less restrictive universal trees introduced by Czerwiński et al. [CDF
+

19]
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and implicitly constructed by Jurdziński and Lazić [JL17], whose sizes therefore

grow faster with size parameters, leading to slower algorithms.

Firstly, we give an inductive construction of Strahler-universal trees and

an upper bound on their numbers of leaves. Secondly, we provide a succinct bit-

string labelling of the Strahler-universal trees, and give an alternative and more

explicit characterization of the succinctly-labelled Strahler-universal trees. Thirdly,

we argue how the succinct bit-string labelling of Strahler-universal trees facilitates

efficient computation of the so-called “level-p successors” in them, which is the key

computational primitive that allows using ordered trees to solve parity games. The

constructions and techniques we develop here are inspired by and significantly refine

those introduced by Jurdziński and Lazić [JL17]. Finally, we also give a lower bound

on the size of a Strahler-universal tree, showing that our constructions are optimal

and also that efforts in improving Lehtinen’s algorithms using Strahler-universal

trees fail.

5.1 Strahler-Universal Trees and Their Sizes

Recall that we had define the embedding of an ordered tree in Chapter 2. Also recall

that an ordered tree is (n, h)-universal [CDF
+

19] if every (n, h)-small ordered tree

can be embedded in it. We define an ordered tree to be k-Strahler (n, h)-universal if

every (n, h)-small ordered tree whose Strahler number is at most k can be embedded

in it, and we give a construction of small Strahler-universal trees.

We first give a gentle introduction behind the construction of k-Strahler

(n, h)-universal trees (U
k
lgn,h). These are constructed with the help of what we call

weak k-Strahler (n, h)-universal trees. A tree is said to have Weak Strahler number

k if the maximum of the Strahler number of its (strict) subtrees is k − 1. Weakly

Strahler Universal trees (V
k
lgn,h) are trees that can embed any tree with at most n

leaves, height at most h, and weak Strahler number at most k.

If a tree has Strahler number k = 1 or if it has only one node (lg n = 0), then

the k-Strahler (n, h)-universal tree as well as the weak k-Strahler (n, h)-universal

tree is just the trivial tree. If instead, the size of the height of the tree is equal to

the Strahler number, then the k-Strahler (n, h)-universal tree is just the same as

the weakly k-Strahler (n, h)-universal tree. If not, then the weak k-Strahler (n, h)-
universal tree would consist of two copies of the weakly k-Strahler (n/2, h)-universal

tree on either side of a k−1-Strahler (n, h−1)-universal tree attached to the root (as

depicted in Fig. 5.1). This is because there is at most one child of a tree with n leaves

will have over n/2 leaves and therefore this tree would be able to embed any tree
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of weak Strahler number k with n leaves and height h. Moreover, all children have

Strahler number at most k−1. We finally define the k-Strahler (n, h)-universal tree

Weakly k-Str.
(n/2, h)-Universal

Weakly k-Str.
(n/2, h)-Universal

k − 1-Strahler
(n, h − 1)-Universal

Figure 5.1: Construction of a weakly k-Strahler (n, h)-Universal tree where h ⩾ k ⩾
2 and there are at n is at least 2.

in such cases of h ⩾ k ⩾ 2 as the tree obtained by adjoining two copies of the weakly

k-Strahler (n, h)-universal trees on either side of a k Strahler (n, h − 1)-universal

tree attached to the root.

Weakly k-Str.
(n, h)-Universal

Weakly k-Str.
(n, h)-Universal

k-Strahler
(n, h − 1)-Universal

Figure 5.2: Construction of a k-Strahler (n, h)-Universal tree where h ⩾ k ⩾ 2 and
there are at n is at least 2.

Definition 5.1.1 (Trees U
k
t,h and V

k
t,h). For all t ⩾ 0, we define trees U

k
t,h (for all h

and k such that h ⩾ k ⩾ 1) and V
k
t,h (for all h and k such that h ⩾ k ⩾ 2) by mutual

induction:

1. if h = k = 1 then U
k
t,h = ⟨⟩;

2. if h > 1 and k = 1 then U
k
t,h = ⟨Ukt,h−1⟩;

3. if h ⩾ k ⩾ 2 and t = 0 then U
k
t,h = V

k
t,h = ⟨Uk−1t,h−1⟩;

4. if h ⩾ k ⩾ 2 and t ⩾ 1 then V
k
t,h = V

k
t−1,h ⋅ ⟨Uk−1t,h−1⟩ ⋅ V k

t−1,h;
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5. if h = k ⩾ 2 and t ⩾ 1 then U
k
t,h = V

k
t,h;

6. if h > k ⩾ 2 and t ⩾ 1 then U
k
t,h = V

k
t,h ⋅ ⟨Ukt,h−1⟩ ⋅ V k

t,h.

Recall that for g ⩾ 1, we defined Ig to be the trivial tree, that is the tree

with exactly one leaf, of height g. It is routine to verify that if h ⩾ k = 1 or t = 0

then U
k
t,h = Ih, and if h ⩾ k ⩾ 2 and t = 0 then V

k
t,h = Ih.

Lemma 5.1.2. For all n ⩾ 1 and h ⩾ k ⩾ 1, the ordered tree U
k
⌊lgn⌋,h is k-Strahler

(n, h)-universal.

Proof. We say that a tree has weak Strahler number at most k if every subtree rooted

in a child of the root has Strahler number at most k − 1. A tree is then weakly

k-Strahler (n, h)-universal if every (n, h)-small ordered tree whose weak Strahler

number is at most k can be embedded in it. We proceed by induction on the

number of leaves in an ordered tree and its height, using the following strengthened

inductive hypothesis:

• for all n ⩾ 1 and h ⩾ k ⩾ 1, ordered tree U
k
⌊lgn⌋,h is k-Strahler (n, h)-universal;

• for all n ⩾ 1 and h ⩾ k ⩾ 2, ordered tree V
k
⌊lgn⌋,h is weakly k-Strahler (n, h)-

universal.

Let T be an (n, h)-small ordered tree of Strahler number at most k. If n = 1,

h = 1, or k = 1, then T is the trivial tree (with just one leaf) of height at most h,

and hence it can be embedded in U
k
⌊lgn⌋,h = Ih, the trivial tree of height h. Likewise,

if h ⩾ k ⩾ 2 and n = 1, then T is the trivial tree of height at most h, and hence it

can be embedded in V
k
⌊lgn⌋,h = Ih, the trivial tree of height h.

Otherwise, we have that T = ⟨T1, . . . , Tj⟩ for some j ⩾ 1. We consider two

cases: either Str (Ti) ⩽ k − 1 for all i = 1, . . . , j, or there is q such that Str (Tq) = k.

Note that the latter case can only occur if h > k.

If Str (Ti) ⩽ k− 1 for all i = 1, . . . , j, then we argue that T can be embedded

in V
k
⌊lgn⌋,h, and hence also in U

k
⌊lgn⌋,h, because V

k
⌊lgn⌋,h can be embedded in U

k
⌊lgn⌋,h by

definition (see items 3., 5., and 6. of Definition 5.1.1). Let p (a pivot) be an integer

such that both trees T
′
= ⟨T1, . . . , Tp−1⟩ and T

′′
= ⟨Tp+1, . . . , Tj⟩ are (⌊n/2⌋ , h)-

small. Then by the strengthened inductive hypothesis, each of the two trees T
′

and T
′′

can be embedded in tree V
k
⌊lg⌊n/2⌋⌋,h = V

k
⌊lgn⌋−1,h and tree Tp can be embedded

in U
k−1
⌊lgn⌋,h−1. It then follows that tree T = T

′ ⋅ ⟨Tp⟩ ⋅ T ′′ can be embedded in

V
k
⌊lgn⌋,h = V

k
⌊lgn⌋−1,h ⋅ ⟨U

k−1
⌊lgn⌋,h−1⟩ ⋅ V

k
⌊lgn⌋−1,h.

If Str (Tq) = k for some q (the pivot), then we argue that T can be em-

bedded in U
k
⌊lgn⌋,h. Note that each of the two trees T

′
= ⟨T1, . . . , Tq−1⟩ and T

′′
=
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⟨Tq+1, . . . , Tj⟩ is (n, h)-small and all trees T1, . . . , Tq−1 and Tq+1, . . . , Tj have Strahler

numbers at most k − 1. By the previous paragraph, it follows that each of the two

trees T
′
and T

′′
can be embedded in V

k
⌊lgn⌋,h. Moreover, tree Tq is (n, h−1)-small and

hence, by the inductive hypothesis, it can be embedded in U
k
⌊lgn⌋,h−1. It follows that

tree T = T
′⋅⟨Tq⟩⋅T ′′ can be embedded in U

k
⌊lgn⌋,h = V

k
⌊lgn⌋,h⋅⟨U

k
⌊lgn⌋,h−1⟩⋅V

k
⌊lgn⌋,h.

Lemma 5.1.3. For all t ⩾ 0, we have:

• if h ⩾ k = 1 then leaves (Ukt,h) = 1;

• if h ⩾ k ⩾ 2 then leaves (Ukt,h) ⩽ 2
t+k(t+k−2

k−2
)(h−1
k−1

).

Proof. The proof is by structural induction, where the inductive hypothesis contains

both the statement that for all t ⩾ 0 and h ⩾ k ⩾ 2, we have:

leaves (Ukt,h) ⩽ 2
t+k(t + k − 2

k − 2 )(h − 1
k − 1) , (5.1)

and that for all t ⩾ 0 and h ⩾ k ⩾ 2, we have the following analogous bound on the

number of leaves of trees V
k
t,h:

leaves (V k
t,h) ⩽ 2

t+k−1(t + k − 2
k − 2 )(h − 2

k − 2) . (5.2)

The following cases correspond to the six items in Definition 5.1.1.

1. If h = k = 1 then leaves (Ukt,h) = leaves (⟨⟩) = 1.

2. If h > 1 and k = 1 then a straightforward induction on h can be used to show

that leaves (Ukt,h) = 1.

3. If h ⩾ k ⩾ 2 and t = 0 then, again, a straightforward induction on h

yields that leaves (V k
t,h) = 1 < 2

t+k−1(t+k−2
k−2

)(h−2
k−2

) and leaves (Ukt,h) = 1 <

2
t+k(t+k−2

k−2
)(h−1
k−1

).

4. Suppose that h ⩾ k ⩾ 2 and t ⩾ 1.

Firstly, for h ⩾ k = 2 and t ⩾ 0, we slightly strengthen the inductive hypothe-

sis (5.2) to:

leaves (V 2
t,h) ⩽ 2

t+1
− 1 , (5.3)

which we prove by induction on t. Indeed, for t = 0 it follows from item 3.
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above, and for t ⩾ 1, we have:

leaves (V 2
t,h) = leaves (U1

t,h−1) + 2 ⋅ leaves (V 2
t−1,h)

⩽ 1 + 2 (2
(t−1)+1

− 1) = 2
t+1

− 1 < 2
t+1(t0)(

h − 2
0 ) ,

where the first inequality follows from items 1. or 2. above, and from the

strengthened inductive hypothesis (5.3).

Secondly, for h ⩾ k ⩾ 3 and t ⩾ 1 we have:

leaves (V k
t,h) = leaves (Uk−1t,h−1) + 2 ⋅ leaves (V k

t−1,h)

⩽ 2
t+k−1(t + k − 3

k − 3 )(h − 2
k − 2) + 2 ⋅ 2

t+k−2(t + k − 3
k − 2 )(h − 2

k − 2)

= 2
t+k−1 [(t + k − 3

k − 3 ) + (t + k − 3
k − 2 )] (h − 2

k − 2)

= 2
t+k−1(t + k − 2

k − 2 )(h − 2
k − 2) ,

where the first inequality follows from the inductive hypothesis and the last

equality follows from Pascal’s identity.

5. Suppose that h = k ⩾ 2 and t ⩾ 1. Then we have:

leaves (Ukt,h) = leaves (V k
t,h) ⩽ 2

t+k−1(t + k − 2
k − 2 )(h − 2

k − 2)

< 2
t+k(t + k − 2

k − 2 )(h − 1
k − 1) ,

where the first inequality follows by the inductive hypothesis and the other

one from h = k.

6. Suppose h > k ⩾ 2 and t ⩾ 1. Then we have:

leaves (Ukt,h) = leaves (Ukt,h−1) + 2 ⋅ leaves (V k
t,h)

⩽ 2
t+k(t + k − 2

k − 2 )(h − 2
k − 1) + 2 ⋅ 2

t+k−1(t + k − 2
k − 2 )(h − 2

k − 2)

= 2
t+k(t + k − 2

k − 2 ) [(h − 2
k − 1) + (h − 2

k − 2)] = 2
t+k(t + k − 2

k − 2 )(h − 1
k − 1) ,
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where the first inequality follows from the inductive hypothesis and the last

equality follows from Pascal’s identity. .

Theorem 5.1.4. For k ⩽ lg n, the number of leaves of the k-Strahler (n, h)-

universal ordered trees U
k
⌊lgn⌋,h is n

O(1) ⋅ (h/k)k = nk lg(h/k)/lgn+O(1)
, which is poly-

nomial in n if k ⋅ lg (h/k) = O(log n). In more detail, the number is at most

n
c(n) ⋅ (h/k)k, where c(n) = 5.45 if k ⩽ lg n, c(n) = 3 + o(1) if k = O(log n), and

c(n) = 1 + o(1) if k = O(1).

Remark 2. By Proposition 4.0.1 and Lemma 5.1.2, for all positive integers n and h,

the tree U
⌊lgn⌋+1
⌊lgn⌋,h is (n, h)-universal. Theorem 5.1.4 implies that the number of leaves

of U
⌊lgn⌋+1
⌊lgn⌋,h is n

lg(h/lgn)+O(1)
, which matches the asymptotic number of leaves of

(n, h)-universal trees of Jurdziński and Lazić [JL17, Lemma 6]. In particular, if

h = O(log n) then lg(h/lg n) = O(1), and hence the number of leaves of U
⌊lgn⌋+1
⌊lgn⌋,h is

polynomial in n.

Proof of Theorem 5.1.4. By Lemma 5.1.2, ordered tree U
k
⌊lgn⌋,h is k-Strahler (n, h)-

universal. By Lemma 5.1.3, its number of leaves is at most 2
⌊lgn⌋+k(⌊lgn⌋+k−2

k−2
)(h−1
k−1

).

We analyze in turn the three terms 2
⌊lgn⌋+k

, (⌊lgn⌋+k−2
k−2

), and (h−1
k−1

). Firstly,

we note that

2
⌊lgn⌋+k

= O(np1(n,k))

where p1(n, k) = 1 + k/lg n, because 2
k
= n

k/lgn
. Secondly, k ⩽ lg n implies that

⌊lg n⌋ + k − 2 < 2 lg n, therefore we have

(
⌊lg n⌋ + k − 2

k − 2
) < 2

2 lgn
= n

2

and hence

(
⌊lg n⌋ + k − 2

k − 2
) = O(np2(n,k))

where p2(n, k) ⩽ 2. Thirdly, applying the inequality (i
j
) ⩽ (ei/j)j to the binomial

coefficient (h
k
), we obtain (h−1

k−1
) < (h

k
) ⩽ (eh/k)k = 2

k lg(eh/k)
, and hence

(h − 1
k − 1) = O(np3(n,h,k))

where

p3(n, h, k) = k lg(eh/k)/lg n = k lg(h/k)/lg n + k lg e/lg n.
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Note that if we let p(n, h, k) = p1(n, k) + p2(n, k) + p3(n, h, k) then the

number of leaves in trees U
k
⌊lgn⌋,h is O(np(n,h,k)). Since k ⩽ lg n implies k/lg n ⩽ 1

and k lg e/lg n ⩽ lg e, we obtain

p(n, h, k) ⩽ k lg(h/k)/lg n + 4 + lg e < k lg(h/k)/lg n + 5.45

and hence the number of leaves in trees U
k
⌊lgn⌋,h is

n
k lg(h/k)/lgn+O(1)

.

If we further assume that k = O(log n) then the constant 5.45 can be straight-

fowardly reduced to 3+O(1) because then k/lg n and k lg e/lg n are O(1). Moreover,

the estimate

(
⌊lg n⌋ + k − 2

k − 2
) = O(n2)

can be improved with further assumptions about k as a function of n; for example,

if k = O(1) then (⌊lgn⌋+k−2
k−2

) is only polylogarithmic in n and hence (⌊lgn⌋+k−2
k−2

) is

n
O(1)

, bringing 3 + o(1) down to 1 + o(1).

5.2 Labelled Strahler-Universal Trees.

Recall the bit-string ordering on W = { 0, 1 }∗. For a bit string β ∈W, we write ∣β∣
for the number of bits in the string. For example, we have ∣ε∣ = 0 and ∣010∣ = 3,

and ∣11∣ = 2. Suppose that ⟨βi, βi−1, . . . , β1⟩ is a node in a W-labelled ordered

tree. Then if βj = bβ for some j = 1, 2, . . . , i, b ∈ { 0, 1 }, and β ∈ W, then we

refer to the first bit b as the leading bit in βj , and we refer to all the following bits

in β as non-leading bits in βj . For example, node ⟨ε, 010, ε, ε, 11⟩ has two non-empty

strings and hence two leading bits, and it uses three non-leading bits overall, because

∣010∣ + ∣11∣ − 2 = 3.

For a bit b ∈ { 0, 1 } and L = ⟨(β1,L1) , . . . , (β`,L`)⟩, a W-labelled ordered

tree , we define [L]b to be the W-labelled ordered tree L = ⟨(bβ1,L1) , . . . , (bβ`,L`)⟩.
In other words, [L]b is the labelled ordered tree that is obtained from L by adding

an extra copy of bit b as the leading bit in the labels of all children of the root of L.

The inductive structure of the next definition is identical to that of Defini-

tion 5.1.1, and hence labelled ordered trees Ukt,h and Vkt,h defined here are labellings

of the ordered trees U
k
t,h and V

k
t,h, respectively.

Definition 5.2.1 (Trees Ukt,h and Vkt,h). For all t ⩾ 0, we define W-labelled ordered
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trees Ukt,h (for all h and k such that h ⩾ k ⩾ 1) and Vkt,h (for all h and k such that

h ⩾ k ⩾ 2) by mutual induction:

1. if h = k = 1 then Ukt,h = ⟨⟩;

2. if h > 1 and k = 1 then Ukt,h = ⟨(ε,Ukt,h−1)⟩;

3. if h ⩾ k ⩾ 2 and t = 0 then Vkt,h = ⟨(ε,Uk−1t,h−1)⟩ and Ukt,h = [Vkt,h]
0
=

⟨(0,Uk−1t,h−1)⟩;

4. if h ⩾ k ⩾ 2 and t ⩾ 1 then Vkt,h = [Vkt−1,h]
0
⋅ ⟨(ε,Uk−1t,h−1)⟩ ⋅ [Vkt−1,h]

1
;

5. if h = k ⩾ 2 and t ⩾ 1 then Ukt,h = [Vkt,h]
0
;

6. if h > k ⩾ 2 and t ⩾ 1 then Ukt,h = [Vkt,h]
0
⋅ ⟨(ε,Ukt,h−1)⟩ ⋅ [Vkt,h]

1
.

The inductive definition of labelled ordered trees Ukt,h and Vkt,h makes it

straightforward to argue that their unlabellings are equal to trees U
k
t,h and V

k
t,h,

respectively, and hence to transfer to them the Strahler-universality established in

Lemma 5.1.2 and upper bounds on the numbers of leaves established in Lemma 5.1.3

and Theorem 5.1.4. We now give an alternative and more explicit characterization

of those trees, which will be more suitable for algorithmic purposes. To that end,

we define W-labelled trees Bkt,h and Ckt,h and then we argue that they are equal to

trees Ukt,h and Vkt,h, respectively, by showing that they satisfy all the recurrences in

Definition 5.2.1.

Definition 5.2.2 (Trees Bkt,h and Ckt,h). For all t ⩾ 0 and h ⩾ k ⩾ 1, we define

W-labelled ordered trees Bkt,h as the tree generated by sequences ⟨βh−1, . . . , β1⟩ such

that:

1. the number of non-empty bit strings among βh−1, . . . , β1 is k − 1;

2. the number of bits used in bit strings βh−1, . . . , β1 overall is at most (k−1)+t;

and for every i = 1, . . . , h − 1, we have the following:

3. if there are less than k − 1 non-empty bit strings among βh−1, . . . , βi+1, but

there are t non-leading bits used in them, then βi = 0;

4. if all bit strings βi, . . . , β1 are non-empty, then each of them has 0 as its

leading bit.

For all t ⩾ 0 and h ⩾ k ⩾ 2, we define W-labelled ordered trees Ckt,h as the

tree generated by sequences ⟨βh−1, . . . , β1⟩ such that:
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1. the number of non-empty bit strings among βh−2, . . . , β1 is k − 2;

2. the number of bits used in bit strings βh−1, . . . , β1 overall is at most (k−2)+t;

and for every i = 1, . . . , h − 1, we have the following:

3. if there are less than k − 2 non-empty bit strings among βh−2, . . . , βi+1, but

there are t − ∣βh−1∣ non-leading bits used in them, then βi = 0;

4. if all bit strings βi, . . . , β1 are non-empty, then each of them has 0 as its

leading bit.

Lemma 5.2.3. For all t ⩾ 0 and h ⩾ k ⩾ 1, we have Ukt,h = Bkt,h.

The following corollary follows from Lemma 5.2.3, and from the identical

inductive structures of Definitions 5.1.1 and 5.2.1.

Corollary 5.2.3.1. For all t ⩾ 0 and h ⩾ k ⩾ 1, the unlabelling of Bkt,h is equal to

U
k
t,h.

The next proposition formalizes the following non-rigorous interpretation of

the difference between trees Bkt,h and Ckt,h:

• If a sequence ⟨βh−1, . . . , β1⟩ is a node in Bkt,h then the bit string βh−1 can

be either empty or non-empty, and if it is non-empty then its first bit is the

leading bit.

• On the other hand, if a sequence ⟨βh−1, . . . , β1⟩ is a node in Ckt,h then the bit

string βh−1 is always to be understood as non-empty. It can be thought of as

obtained by removal of its “original” leading bit in the corresponding leaf in

tree Bkt,h, and hence it consists only of (possibly zero) non-leading bits.

Proposition 5.2.4. For all t ⩾ 1 and h ⩾ k ⩾ 2, we have:

1. if h = k then ⟨βh−1, . . . , β1⟩ is a leaf in Ckt,h if and only if ⟨0βh−1, βh−2, . . . , β1⟩
is a leaf in Bkt,h;

2. if h > k then for both b ∈ { 0, 1 }, we have that ⟨βh−1, . . . , β1⟩ is a leaf in Ckt,h
if and only if ⟨bβh−1, βh−2, . . . , β1⟩ is a leaf in Bkt,h;

3. ⟨ε, βh−2, . . . , β1⟩ is a leaf in Ckt,h if and only if ⟨βh−2, . . . , β1⟩ is a leaf in Bk−1t,h−1.

Proof of Lemma 5.2.3. We argue that trees Bkt,h and Ckt,h satisfy all the recurrences

in Definition 5.2.1 that involve trees Ukt,h and Vkt,h, respectively.
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1. If h = k = 1 then tree Bkt,h is the trivial tree ⟨⟩.

2. If h > k = 1 then Bkt,h has only one leaf ⟨εh−1⟩, and hence we have Bkt,h =
⟨(ε,Bkt,h−1)⟩.

3. Suppose that h ⩾ k ⩾ 2 and t = 0. Then Bkt,h has exactly one leaf, which

is of the form ⟨0k−1, εh−k⟩, and Ckt,h has exactly one leaf, which is of the

form ⟨ε, 0k−2, εh−k⟩. It follows that Ckt,h = ⟨(ε,Bk−1t,h−1)⟩ and Bkt,h = [Ckt,h]
0
=

⟨(0,Bk−1t,h−1)⟩.

4. Suppose that h ⩾ k ⩾ 2 and t ⩾ 1. We argue that the following recurrence

holds:

Ckt,h = [Ckt−1,h]
0
⋅ ⟨(ε,Bk−1t,h−1)⟩ ⋅ [Ckt−1,h]

1
.

First, we show that every leaf in Ckt,h is also a leaf in tree ⟨(ε,Bk−1t,h−1)⟩ or in

tree [Ckt−1,h]
b

for some b ∈ { 0, 1 }. Suppose that ` = ⟨βh−1, . . . , β1⟩ is a leaf

in Ckt,h.

• If βh−1 = ε then ⟨βh−2, . . . , β1⟩ is a leaf in Bk−1t,h−1, and hence the node

` = ⟨ε, βh−2, . . . , β1⟩ is a leaf in tree ⟨(ε,Bk−1t,h−1)⟩.
• If βh−1 = bβ for some b ∈ { 0, 1 } then ⟨β, βh−2, . . . , β1⟩ is a leaf in Ckt−1,h,

and hence ` = ⟨bβ, βh−2, . . . , β1⟩ is a leaf in [Ckt−1,h]
b
.

Conversely, we now argue that if ` = ⟨βh−1, . . . , β1⟩ is a leaf in labelled ordered

tree ⟨(ε,Bk−1t,h−1)⟩, then it is also a leaf in Ckt,h. Note that the premise implies

that βh−1 = ε and ⟨βh−2, . . . , β1⟩ is a leaf in Bk−1t,h−1, and hence, by item 3. in

Proposition 5.2.4, we have that ` = ⟨ε, βh−2, . . . , β1⟩ is indeed a leaf in Ckt,h.

Finally, we argue that if ` = ⟨βh−1, . . . , β1⟩ is a leaf in a tree [Ckt−1,h]
b

for

b ∈ { 0, 1 }, then it is also a leaf in Ckt,h. Indeed, the premise implies that

βh = bβ and ⟨β, βh−2, . . . , β1⟩ is a leaf in Ckt−1,h, and hence ` = ⟨bβ, βh−2, . . . , β1⟩
is indeed a leaf in Ckt,h.

5. Suppose that h = k ⩾ 2 and t ⩾ 1. We argue that then we have Bkt,h = [Ckt,h]
0
.

First, let ` = ⟨βh−1, . . . , β1⟩ be a leaf in tree Bkt,h. Since h = k, all bit strings

βh−1, . . . , β1 are non-empty, and hence βh−1 = 0β for some β ∈W. By item 1.

of Proposition 5.2.4, it follows that the sequence ⟨β, βh−2, . . . , β1⟩ is a leaf

in Ckt,h, and hence ` = ⟨0β, βh−2, . . . , β1⟩ is indeed a leaf in [Ckt,h]
0
.
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Conversely, let ` = ⟨βh−1, . . . , β1⟩ be a leaf in tree [Ckt,h]
0
. Then βh−1 = 0β

for some β ∈ W and sequence ⟨β, βh−2, . . . , β1⟩ is a leaf in Ckt,h. By item 1. of

Proposition 5.2.4, it follows that ` = ⟨0β, βh−2, . . . , β1⟩ is indeed a leaf in Bkt,h.

6. Suppose that h > k ⩾ 2 and t ⩾ 1. We argue that then the following recurrence

holds:

Bkt,h = [Ckt,h]
0
⋅ ⟨(ε,Bkt,h−1)⟩ ⋅ [Ckt,h]

1
.

First, we show that every leaf in Bkt,h is also a leaf in tree ⟨(ε,Bkt,h−1)⟩ or in tree

[Ckt,h]
b

for some b ∈ { 0, 1 }. Suppose that ` = ⟨βh−1, . . . , β1⟩ is a leaf in Bkt,h.

• If βh−1 = ε then ⟨βh−2, . . . , β1⟩ is a leaf in Bkt,h−1, and hence the node

` = ⟨ε, βh−2, . . . , β1⟩ is a leaf in ⟨(ε,Bkt,h−1)⟩.
• If βh−1 = bβ for some b ∈ { 0, 1 } then, by item 2. of Proposition 5.2.4,

⟨β, βh−2, . . . , β1⟩ is a leaf in Ckt,h, and hence ` = ⟨bβ, βh−2, . . . , β1⟩ is a leaf

in [Ckt,h]
b
.

Conversely, we now argue that if ` = ⟨βh−1, . . . , β1⟩ is a leaf in labelled or-

dered tree ⟨(ε,Bkt,h−1)⟩, then it is also a leaf in Bkt,h. Note that the premise

implies that βh−1 = ε and ⟨βh−2, . . . , β1⟩ is a leaf in Bkt,h−1. It follows that

` = ⟨ε, βh−2, . . . , β1⟩ is indeed a leaf in Bkt,h.

Finally, we argue that if ` = ⟨βh−1, . . . , β1⟩ is a leaf in [Ckt,h]
b

for some

b ∈ { 0, 1 }, then it is also a leaf in Bkt,h. The premise implies that βh−1 = bβ

for some β ∈ W and that ⟨β, . . . , β1⟩ is a leaf in Ckt,h. By item 2. of Proposi-

tion 5.2.4, it follows that ` = ⟨bβ, βh−2, . . . , β1⟩ is indeed a leaf in Bkt,h.

Straightforward structural induction (on the structure of labelled ordered

trees Ukt,h and Vkt,h) yields that Bkt,h = Ukt,h and Ckt,h = Vkt,h.

5.3 Efficiently navigating labelled Strahler-universal trees

The computation of the level-p successor of a leaf in a labelled ordered tree of

height h is the following problem: given a leaf ⟨βh, βh−1, . . . , β1⟩ in the tree and given

a number p, such that 1 ⩽ p ⩽ h, compute the <lex-smallest leaf ⟨β′h, β′h−1, . . . , β′1⟩
in the tree, such that ⟨βh, . . . , βp⟩ <lex ⟨β′h, . . . , β′p⟩. As (implicitly) explained by

Jurdziński and Lazić [JL17, Proof of Theorem 7], the level-p successor computation

is the key primitive used extensively in an implementation of a progress measure

lifting algorithm.
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Lemma 5.3.1. Every leaf in tree Bkt,h can be represented using O((k + t) log h)
bits and for every p = 1, 2, . . . , h, the level-p successor of a leaf in tree Bkt,h can be

computed in time O((k + t) log h).

Proof. Consider the following representation of a leaf ⟨βh−1, . . . , β1⟩ in Bkt,h: for

each of the at most k + t bits used in the bit strings βh−1, . . . , β1 overall, store

the value of the bit itself and the number, written in binary, of the component

in the h-tuple that this bit belongs to. Altogether, the number of bits needed is

O((k + t) ⋅ (1 + lg h)) = O((k + t) log h).
We now consider computing the level-p successor of a leaf ` = ⟨βh−1, . . . , β1⟩

in tree Bkt,h. We split the task of computing the level-p successor `
′
of leaf ` into the

following two steps:

• find the lowest ancestor ⟨βh−1, . . . , βq⟩ of ⟨βh−1, . . . , βp⟩ (that is, smallest q

satisfying q ⩾ p) that has the next sibling ⟨βh−1, . . . , βq+1, β′q⟩ in Bkt,h;

• find the smallest leaf `
′
= ⟨βh−1, . . . , βq+1, β′q, β′q−1, . . . , β′1⟩ that is a descendant

of node ⟨βh−1, . . . , βq+1, β′q⟩ in Bkt,h.

For node `r = ⟨βh−1, . . . , βr⟩, where q ⩽ r ⩽ h− 1, we can determine whether

it has the next sibling `
′
r = ⟨βh−1, . . . , βr+1, β′r⟩ in Bkt,h and find it, by considering

the following cases. Firstly, we identify the cases in which `r does not have the next

sibling:

• the number of non-empty strings among βh−1, . . . , βr+1 is k − 1;

• the number of non-leading bits used in strings βh−1, . . . , βr+1 is t;

• βr = 01
j

for some j ⩾ 0, the number of non-leading bits used in strings βh−1,

. . . , βr is t, and all bit strings βr, . . . , β1 are non-empty;

• βr = 1
j

for some j ⩾ 1, and the number of non-leading bits used in strings

βh−1, . . . , βr is t.

Define kr+1 to be equal to k − 1 minus the number of non-empty bit strings among

βh−1, . . . , βr+1, and define tr+1 to be equal to t minus the number of non-leading

bits used in strings βh−1, . . . , βr+1. We note that the subtree of Bkt,h that is rooted

at node `r+1 is a copy of tree Bkr+1tr+1,r+1. Recall that trees Bkt,h satisfy the same

recurrences as trees Ukt,h. Observe that the four cases above capture `r being the

largest child of the root of the copy of Bkr+1tr+1,r+1 rooted in node `r+1 in Bkt,h, that

correspond to items 2., 3., 5., and 6. of Definition 5.2.1, respectively.

Secondly, we consider the remaining two cases in which `r does have the next

sibling and we show how to find it by setting the value of β
′
r accordingly.
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• If less than t non-leading bits are used in strings βh−1, . . . , βr then set β
′
r =

βr10
j

for some j ⩾ 0, so that exactly t non-leading bits are used in strings

βh−1, . . . , βr+1, β
′
r.

• If exactly t non-leading bits are used in strings βh−1, . . . , βr, and βr = β01
j

for some β ∈W and j ⩾ 0, then set β
′
r = β.

Finally, we set `
′
= ⟨βh−1, . . . , βq+1, β′q, 00

i
, 0, . . . , 0, ε, . . . , ε⟩ for some suitable

i ⩾ 0, so as to make the number of non-empty bit strings in `
′

equal to k − 1, and

the number of bits used in all the bit strings in `
′

equal to (k − 1) + t.
To argue that the above case analyses can be implemented to work in time

O((k + t) log h), while using the succinct representation described above, is tedious

and hence we eschew it.

5.4 Lower bound for Strahler-universal trees

Theorem 5.4.1. The size of a k-Strahler (n, h)-universal tree is Ω(n lg n ( h
k−1

)k−1).

Proof. We show that there exists a lower bound on the size of a k-Strahler (n, h)-
universal tree, denoted by f(n, h, k), such that:

f(n, h, k) ⩾ n lg n

2048
( h
k − 1) >

n lg n

2048
( h

k − 1
)
k−1

More precisely, we show that:

f(n, h, k) ⩾ max(n lg n

2048
( h
k − 1),(

h
k − 1)) (5.4)

This proof closely follows the proof of Czerwiński et al’s [CDF
+

19] lower bound.

First, define f(n, h, k) in the following cases:

• f(1, h, k) = 1, for all h, k,

• f(n, h, 1) = 1, for all n, h, and

• f(n, 1, k) = n for all n and k ⩾ 2

Clearly, f(n, h, k) is a lower bound on the size of a k-Strahler (n, h)-universal tree

and satisfies Equation 5.4.

We will show that one can define by induction f(n, h, k) as a lower bound

on the size of a k-Strahler (n, h)-universal tree satisfying Equation 5.4 for k ⩽ lg n

and k ⩽ h.
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Then, by defining f(n, h, k) as follows in the remaining cases, we can conclude

the proof:

• f(n, h, k) = f(n, h, lg n) if k > lg n,

• f(n, h, k) = f(n, h, h) if k > h,

We now define f(n, h, k) by induction, under the assumption that k ⩽ lg n

and k ⩽ h. For a k-Strahler (n, h)-universal tree T , we claim that the number of

nodes at depth h − 1 with degree ⩾ δ is at least

• f(n, h − 1, k) if δ = 1 and

• f(⌊n/δ⌋, h − 1, k − 1) for δ > 1.

Suppose δ = 1, the bound is obvious. For δ > 1, consider any k-Strahler

(n, h)-universal tree U . Let Uδ be the tree obtained by deleting all nodes that do

not have degree at least δ. Consider any tree Tδ with at most ⌊n/δ⌋ many nodes,

height at most h and Strahler number at most k− 1. We will show that this tree Tδ

must embed into Uδ, showing that Uδ is (k−1)-Strahler (⌊n/δ⌋, h−1)-universal. In

Tδ, add δ many children to each of the ⌊n/δ⌋ leaves. This results in a tree that has

Strahler number at most k and at most n children and must then embed into Uδ.

Since the number of vertices at depth h − 1 with degree δ is as argued, we

can conclude that there exists a lower bound f(n, h, k) on the size of a k-Strahler

(n, h)-universal tree such that:

f(n, h, k) ⩾ f(n, h − 1, k) +
n

∑
δ=2

f(⌊n/δ⌋, h − 1, k − 1). (5.5)

By induction, we get:

f(n, h, k) ⩾ n lg n

2048
(h − 1
k − 1) +

1

2048

n

∑
δ=2

⌊n/δ⌋ lg ⌊n/δ⌋(h − 1
k − 2).

This gives:

f(n, h, k) ⩾ n lg n

2048
(h − 1
k − 1) +

1

2048
(h − 1
k − 2)

n

∑
δ=2

⌊n/δ⌋ lg ⌊n/δ⌋.

Case 1. We will show that for n > 2
8

and h, k > 1,

n

∑
δ=2

⌊n/δ⌋ lg ⌊n/δ⌋ ⩾ n lg n. (5.6)
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Let p = ⌊lg n⌋, then

n

∑
δ=2

⌊n/δ⌋ lg ⌊n/δ⌋ ⩾
p

∑
i=1

2
i−1 (⌊2

p

2i
⌋ lg ⌊2

p

2i
⌋)

=

p

∑
i=1

(p − i)2p−1 = 2
p+1

p

∑
i=1

p − i
4

.

Since 2
p+1

⩾ n and ∑p
i=1

p−i
4
=

p(p−1)
8

⩾ lg n for all p > 8, (5.6) holds for all

n > 2
8
.

By (5.6) and Pascal’s identity, we finally get for all n > 2
8
:

f(n, h, k) ⩾ n lg n

2048
( h
k − 1) ⩾ max(( h

k − 1),
n lg n

2048
( h
k − 1)) .

Case 2. It remains to handle the case n ⩽ 2
8
. For 2 ⩽ n ⩽ 2

8
observe that

( h
k − 1) ⩾

n lg n

2048
( h
k − 1).

It is then enough to prove by induction that

f(n, h, k) ⩾ ( h
k − 1).

We get the following sequence of inequalities - the first is from equation (5.5),

the second is by induction hypothesis and the last one from Pascal’s identity:

f(n, h, k) ⩾ f(n, h − 1, k) +
n

∑
δ=2

f(⌊n/δ⌋, h − 1, k − 1)

⩾ (h − 1
k − 1) + (h − 1

k − 2) = ( h
k − 1).

5.5 Strahler-universal progress measure lifting algorithm

Jurdziński and Lazić [JL17, Section IV] have implicitly suggested that the progress-

measure lifting algorithm [Jur00] can be run on any ordered tree and they have

established the correctness of such an algorithm if their Jurdziński-Lazić universal

trees were used. This has been further clarified by Czerwiński et al. [CDF
+

19,

Section 2.3], who have explicitly argued that any (n, d/2)-universal ordered tree

is sufficient to solve an (n, d)-small parity game in this way. We make explicit a
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more detailed observation that follows using the same standard arguments (see, for

example, Jurdziński and Lazić [JL17, Theorem 5]).

Proposition 5.5.1. Suppose the progress measure-lifting algorithm is run on a par-

ity game G and on an ordered tree T . Let D be the largest Steven dominion in G on

which there is a Steven progress measure whose tree can be embedded in T . Then

the algorithm returns a Steven dominion strategy on D.

An elementary corollary of this observation is that if the progress-measure

lifting algorithm is run on the tree of a progress measure on some Steven dominion in

a parity game, then the algorithm produces a Steven dominion strategy on a superset

of that dominion. Note that this is achieved in polynomial time because the tree of

a progress measure on an (n, d)-small parity game is (n, d/2)-small and the running

time of the algorithm is dominated by the size of the tree [JL17, Section IV.B].

Theorem C. There is an algorithm for solving parity games with n vertices, d

priorities, and of Strahler number k in quasi-linear space and time n
O(1) ⋅(d/2k)k =

n
k lg(d/k)/lgn+O(1)

, which is polynomial in n if k ⋅ lg(d/k) = O(log n).

Proof. By Proposition 4.0.1, we may assume that k ⩽ 1 + lg n. In order to solve

an (n, d)-small parity game of Steven Strahler number k, run the progress-measure

lifting algorithm for Steven on tree Bk+1⌊lgn⌋,d/2+1, which is (k+1)-Strahler (n, d/2+1)-
universal by Lemma 5.1.2 and Corollary 5.2.3.1. By Theorem 4.3.2 and by Proposi-

tion 5.5.1, the algorithm will then return a Steven dominion strategy on the largest

Steven dominion. The running time and space upper bounds follow from Theo-

rem 5.1.4, by the standard analysis of progress-measure lifting as in [JL17, Theo-

rem 7], and by Lemma 5.3.1.

5.6 Remarks

We highlight the k ⋅ lg(d/k) = O(log n) criterion from Theorem C as offering a novel

trade-off between two natural structural complexity parameters of parity games

(number of priorities d and the Strahler/Lehtinen number k) that enables solving

them in time that is polynomial in the number of vertices n. It includes as special

cases both the d < lg n criterion mentioned by Calude et al. [CJK
+

22, Theorem 16]

and the d = O(log n) criterion of Jurdziński and Lazić [JL17, Theorem 7] (set

k = ⌊lg n⌋ + 1 and use Propositions 2.0.4 and 4.0.1 to justify it), and the k = O(1)
criterion of Lehtinen and Boker [LB20, Theorem 4.2] (by Theorem B).
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We argue that the new k ⋅ lg(d/k) = O(log n) criterion (Theorem C) en-

abled by our results (coincidence of the Strahler and the Lehtinen numbers: Theo-

rem B) and techniques (small and efficiently navigable Strahler-universal trees: The-

orem 5.1.4, Corollary 5.2.3.1, and Lemma 5.3.1) considerably expands the asymp-

totic ranges of the natural structural complexity parameters in which parity games

can be solved in polynomial time. We illustrate it by considering the scenario in

which the rates of growth of both k and lg d as functions of n are O(
√

log n), i.e., d

is 2
O(

√
logn)

. Note that the number of priorities d in this scenario is allowed to grow

as fast as 2
b⋅
√
lgn

for an arbitrary positive constant b, which is significantly larger

than what is allowed by the d = O(log n) criterion of Jurdziński and Lazić [JL17,

Theorem 7]. Indeed, its rate of growth is much larger than any poly-logarithmic

function of n, because for every positive constant c, we have (lg n)c = 2
c⋅lg lgn

, and

c⋅lg lgn is exponentially smaller than b⋅
√

lg n. At the same time, the O(
√

log n) rate

of growth allowed in this scenario for the Strahler number k substantially exceeds

k = O(1) required by Lehtinen [Leh18, Theorem 3.6].
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Part II
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Chapter 6

Strategy iteration algorithm

with decompositions

Strategy improvement algorithms are a class of algorithms to solve Markov decision

processes as well as parity, mean-payoff, discounted payoff and stochastic games.

This approach was motivated by Howard’s [How60] policy iteration algorithm, which

is commonly used to determine the values of a Markov decision process. Hoffman

and Karp [HK66] pioneered the development of strategy improvement algorithms for

two-player games and addressed stochastic games. These algorithms trickled down

the hierarchy of games from turn-based stochastic games [Con92] to discounted and

mean-payoff games [GKK88, Pur95, ZP96], to parity games [VJ00].

Strategy improvement algorithms for positionally determined games fix a

valuation for every Steven strategy, usually based on an optimal counter-strategy

of Audrey. Starting from a positional strategy of Steven, until an optimal strategy

is found, the strategy is improved with respect to this valuation by switching some

edges of the strategy for Steven. Ideally, computing this improved strategy and

verification of its optimality can be done efficiently. The proceedure that dictates

which edges are chosen is called the switching policy.

Variations of strategy improvement algorithms have been explored for par-

ity games, resulting in both theoretical and practical studies [VJ00, Lut08, Sch08,

Fea17, FS18]. Despite the popular notion that the number of strategy improvements

required is generally small in practice, these algorithms can have exponential worst-

case complexity. Exponential families of examples for common pivoting rules for

both games [Fri09] and for MDPs [Fea10] emerged decades after the introduction of

strategy improvement algorithms, revealing that strategy improvement algorithms

do not always guarantee polynomial termination as initially believed. Apart from
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deterministic switching conditions, subexponential lower bounds were established

even for randomised pivoting rules [FHZ11].

The quasi-polynomial breakthrough for parity games inspired further study

of this classical algorithm. Ohlmann, in his PhD thesis [Ohl21], outlined an impos-

sibility result that ruled out quasi-polynomial algorithms for a particular framework

of strategy improvement algorithms. This framework required that the valuation

was based on the current strategy and an optimal positional counter strategy. How-

ever, the work of Koh and Loho [KL22] circumvented this impossibility result by

considering a hybrid algorithm of value iteration and strategy improvement (called

strategy iteration algorithms here) where the valuation depended on both an Audrey

strategy and also on a progress measure.

In the strategy iteration algorithm of Koh and Loho for parity games, an

arbitrary (positional) strategy is chosen for one player, say Audrey. The valuation

at each step is a progress measure of the game obtained by restricting Audrey to

the chosen strategy edges. When a new strategy is chosen for the next iteration, a

new valuation is computed based on the progress measure of the previous iteration

and the new strategy. This valuation is obtained by finding the smallest progress

measure larger than the one previously computed on the game restricted to the new

strategy. The technically challenging part of their algorithm is to find this smallest

progress measure once a new strategy is identified. Koh and Loho provide a way

to find such a progress measure for a new strategy in time O(mn2 log n log d) if the

underlying tree is the Jurdziński-Lazić universal tree [JL17], O(mn2 log
3
n log d) if

the underlying tree is the Strahler universal trees [DJT20], and O(d(m+n log n)) for

complete trees [Jur00]. Combined with the bounds on the sizes of the tree, this gives

them a quasi-polynomial strategy iteration algorithm for Jurdziński-Lazić universal

trees and Strahler universal trees, and a new exponential strategy improvement

algorithm.

Our primary contribution is a strategy iteration algorithm that improves on

Koh and Loho’s work in the following way. We produce a universal strategy it-

eration algorithm, whose underlying tree can be any tree, and not just the trees

mentioned above. In order to achieve such an algorithm, we define new objects

called decompositions, which can be seen as a relaxation of attractor decomposi-

tions [DJL18, DJL19], endowed with a partial order among them. Our algorithm

works by iteratively improving an underlying valuation. However this valuation is

based on the strategy, as well as on the decompositions maintained after each im-

provement of the strategy. Secondly, we show that using decompositions instead

of progress measures simplifies the algorithm of Koh and Loho. Indeed, Koh and
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Loho’s quasi-polynomial algorithms relied on the regularity obtained from recursive

definitions of the universal trees, whereas we are able to remove such requirements

and modify their algorithm to work for parity games with arbitrary trees of attractor

decompositions. Thirdly, we show that each strategy improvement step can be done

in time O(md log n). Especially in the case where the trees are Jurdziński-Lazić

universal trees or the Strahler universal trees, we improve the runtime of one iter-

ation of the strategy iteration algorithm to closely match Koh and Loho’s runtime

for complete trees.

6.1 Attractor decompositions versus decompositions

Attractor decompositions are structural witnesses that shed light on the underlying

structure of the game. Although obtained naturally as a byproduct of the classical

recursive symmetric attractor computation algorithm of McNaughton[McN93] and

Zielonka [Zie98], utilising attractor decompositions in other quasi-polynomial ver-

sions of recursive attactor based algorithms—or even constructing them as a part

of the output like the ones in Lehtinen et al. [LPSW22] or the universal algorithm

of Jurdziński and Morvan [JMT22]—is not straightforward. This is because these

attractor decompositions, by virtue of being witnesses of winning in a parity game,

are quite binary: a subgame either has an attractor decomposition, or it doesn’t.

We introduce the concept of decompositions, a relaxation of attractor decom-

positions, and use it as an ingredient in building a valuation. Since a valuation needs

to determine “how good” a strategy is, it requires an underlying order. These de-

compositions are defined with respect to a fixed tree and, using the order of the fixed

tree, we define an order on the set of all valuations. Observe that this definition de-

viates slightly from our earlier definition of an attractor decomposition, where they

were defined as hierarchical decompositions of winning sets for parity games. The

attractor decompositions thus defined had ordered trees that correspond to them.

In order to facilitate our definition of a decomposition, we first introduce a slightly

altered, but conceptually equivalent, definition of an attractor decomposition, which

is defined with respect to a fixed ordered tree.

Since the attractor decompositions used in the following section for Steven

and Audrey are defined with respect to a tree, we wish to reason about these trees

slightly differently for each player.

Even and odd levels of trees. We fix a tree T which is equitable, that is, every

leaf has the same “depth”. For such a tree T , we say that the even level of a leaf
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of this tree is 2. For nodes of the tree T that are not the leaf, its even level is

exactly two more than the level of any of its children. The odd level of a tree T is

defined similarly, except that the odd level of the leaf is instead 1. Note that the

height of a tree is at most half of the even or the odd level. For a node η in the

tree T , we use Even-level (η) and Odd-level (η) to denote the even and odd levels

of η in the tree, respectively. The even level of a tree is the even level of its root.

Figure 6.1: An ordered tree

For example, consider the labelled tree com-

prising exactly of the nodes {⟨⟩ , ⟨1⟩ , ⟨2⟩ , ⟨1, 1⟩,
⟨2, 1⟩ , ⟨2, 2⟩}. This tree is illustrated in Fig. 6.1

where each node is represented by ε and its vari-

ants. The node ⟨2, 2⟩, written as ε22 has even

level 2 and odd level 1 since it is a leaf, whereas

the node ⟨⟩, written as ε, has even level 6 and

odd level 5. For a node, we usually use the same

variable, but with increasing subscripts from N
to list their children in increasing order; for ex-

ample, we use η1, . . . , ηk to denote the first k children of η in that order.

In this chapter, we write G⩽p to represent the subgame obtained by only

considering the vertices of priority at most p in a parity game G.

Attractor decomposition with respect to a tree T . We alter our previous

definition of an attractor decomposition. Our modified definition is more fundamen-

tally associated with a pre-determined tree, instead of our earlier definition, where

we had to extract the tree out of the recursive definition of the attractor decompo-

sition. Hence, for a fixed tree, we define it as a partition of the set of vertices of the

game such that there are three distinct parts of the partition corresponding to each

node of the tree.

For a node η in a tree T , we say that Steven has an (η, T )-attractor decom-

position of a parity game G, if the vertices of the game G can be partitioned into

three times as many parts as there are descendants of the node η, with three parts

corresponding to each of the nodes. We further require that these partitions satisfy

some properties about traps and attractors.

More rigorously, consider an (n, d+1)-small parity game G where Steven wins

from all vertices. Let η be a node in a tree T , where Even-level (η) ⩽ d, and with `

children η1, . . . , η`. We say that

A = ⟨Hη
, T

η
, (A1, . . . ,A`) , Sη⟩
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is a Steven (η, T )-attractor decomposition of G if

1. the vertex set V is partitioned into ` + 3 subsets by H
η
, T

η
, S

η
, R1, . . . , R`;

2. the set V \ Sη, henceforth written as [Aη], is a trap for Steven in the game G
and it contains vertices of priority at most d;

3. H
η

consists of all vertices in [Aη] that have priority exactly Even-level (η) ;

4. there is a Steven-reachability strategy from all vertices of T
η

to the set H
η

in

the subgame induced by [Aη];

5. there is a Steven-reachability strategy from all vertices of S
η

to the set of

vertices [Aη] in G;

and setting G1 = G \ (Hη ∪ T η), for i = 1 . . . `, we have:

6. Ri is a trap for Steven in Gi;

7. Ai is an (ηi, T )-attractor decomposition for the subgame induced by Ri;

8. Gi+1 = Gi \Ri;

and G`+1 = S
η
.

For any node γ that is a descendent of η, we write H
γ
A, T

γ
A or S

γ
A to denote the

sets H
γ
, T

γ
or S

γ
respectively in an (η, T )-decomposition A of G. The subscript is

only adopted in situations where we refer to more than one attractor decomposition

and we drop the subscript if A is clear from context.

Remark 3. For a tree T and a node η in it with even level d, a Steven (η, T )-

decomposition of an (n, d + 1)-small parity game G always is such that

• H
γ
A only contains vertices of priority exactly d,

• T
γ
A only contains vertices of priority at most d − 1, and

• S
γ
A only contains vertices of priority at most d + 1.

An Audrey (η, T )-decomposition is defined analogously. We sometimes write

T -decomposition instead of (η, T )-decomposition when η is the root of T .

Example 2. Consider the game G illustrated in Fig. 6.2(a). Steven wins from all

vertices in this game. We show a T -attractor decomposition in Fig. 6.2(b) of the

game G, where the tree T is the N-labelled tree illustrated in Fig. 6.1. In a Steven

(ε, T )-attractor decomposition, the sets H
ε
, T

ε
, R1, R2, S

ε
as in the definition of an
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(a) A parity game G

(b) (ε, T )-attractor decomposition A of G

Figure 6.2: A parity game and its attractor decomposition

attractor decomposition are as follows. The parts H
ε
, T

ε
, and S

ε
are empty. The

set R1 contains all the parts to the left of and including the part S
ε1. The set R2

contains all other parts strictly to the right of and not including S
ε1. A reader is

encouraged to verify Remark 3 on this example.

The set S
ε

is used to denote attractor sets represented on the “Side” of the

game, and T
η

is used to denote the attractor sets that are attracted to “Top” of

the game where the “Highest priority” set H
ε

is placed. We also often refer to the

sets as top-attractor set or side-attractor set of a node γ for the sets T
γ

and S
γ

respectively.

Proposition 6.1.1 ([McN93, Zie98]). In an (n, d)-small parity game G, Steven wins

from all vertices if and only if there is a Steven (η, T )-attractor decomposition for

some node η in an ordered tree T where the even level of η is at most d + 1.

Steven attractor decomposition when Audrey has no choice. Finding at-

tractor decompositions of a parity game is at least as hard as identifying a winner

of a parity game, as atrractor decompositions are a witness of winning. If we re-

strict ourselves to the case where Audrey has no choice (all her vertices have at

most one out-going edge), solving such games can be done in near-linear time. This

is not surprising, as the problem of finding if Steven can win reduces to finding

an even cycle in the underlying graph. One can do this in time O(md) by using

Tarjan’s SCC [Tar72] decomposition algorithm on the graph restricted to vertices

of priority at most p, for each even p, to identify such cycles. King, Kupferman,

and Vardi [KKV01] improved the complexity by providing an O(m log d) time al-

gorithm for checking non-emptiness of a parity automaton by identifying the states

of an automaton, from which some even-cycle can be reached. Finding the winner

in a parity game where a player has no choice reduces to the problem of checking

non-emptiness of a parity automaton.
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In such games where Audrey has no choice, Steven has a “simple” attractor

decomposition. By simple, we mean that Audrey has an I-decomposition where I is

the tree with exactly one leaf and the even level of its root is as large as the highest

even priority in the game G.

Proposition 6.1.2. For an (n, d)-small parity game, where the root of the tree

with one leaf I has even level d, there is a Steven I-attractor decomposition of G, if

Audrey has no choice in G.

Proof. We assume that we have a parity game where an even cycle is reachable

by any vertex. If not, one could apply the algorithm of King, Kupferman, and

Vardi [KKV01] to remove vertices that cannot reach an even cycle. Let the root of

I be η and the only child of η be η1.

We define the (η, I)-decomposition Aη
defined as follows:

• The set S is the set of vertices in G from which all paths lead to a vertex of

priority d + 1.

• The set H is the set of vertices of priority d from which there is an infinite

path that does not visit a vertex of priority d + 1.

• The set T is the set of vertices of priority at most d− 1 and from which there

is a path to H in G⩽d.

• The set W is the set of vertices in G that are not in S, H, or T .

• Recursively, we find the (η1, I)-attractor decomposition A′
for the subset of

vertices W in the rest of the game G⩽d−1, where the node η1 is a child of the

node η.

• Declare A = ⟨H,T, (A′) , S⟩ as the (η, I)-attractor decomposition.

Suppose we fix a strategy for Audrey, then it is easy according to Propo-

sition 6.1.2 above to find an attractor decomposition. But what happens to this

attractor decomposition when a different strategy of Audrey is chosen? To under-

stand this further, we introduce our central object of this chapter: a decomposition.

It is a relaxation of the above definition of a Steven (η, T )-attractor decomposition

of a parity game.

Decomposition. A Steven (η, T )-decomposition Dη
of the vertices V of a parity

game G, where children of η are denoted by η1, . . . , ηk, is defined recursively as

Dη
= ⟨Hη

, T
η
, (Dη1 , . . . ,Dηk) , Sη⟩
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(a) Decomposition D (b) Decomposition E

Figure 6.3: Two decomposition of the parity game in Fig. 6.2(a) neither of them is
an attractor decomposition

such that

• the sets H
η
, T

η
, S

η
, R1, . . . , and Rk partition V .

• H
η

consists exactly all vertices of priority equal to Even-level (η) in set V \Sη,
written as [Dη] henceforth.

• S
η

is a superset of all vertices in V of priority Even-level (η) + 1 in V .

• For each child η1, η2, . . . , ηk of η in T , Dηi is an (ηi, T )-decomposition of Ri.

Observe that although there is no condition on the set T
η

in the above definition,

it only contains vertices of priority at most Even-level (() η) − 1. Given an (η, T )
decomposition, we refer to all the vertices of G using JDηK. In the above, JDηK = V
and JDηiK = Ri. Similar to attractor decompositions, when η is the root of T , we

just refer to it as T -decomposition of a game. The Audrey (η, T )-decomposition of

a game is defined analogously. We sometimes refer to a set of the form T
γ

for a

node γ as the top-set of γ, as it is derived from the top attractor set, and similarly

we say side-set to refer to sets of the form S
γ
.

Example 3. Consider the two different decompositions given in Fig. 6.3 of the game

G in Fig. 6.2(a). These decompositions are non-examples of attractor decomposition.

Neither decomposition here is an attractor decomposition. The decomposition D in

Fig. 6.3(a) is not an attractor decomposition because the set of vertices JDε1K does

not form a trap for Steven in the game. The set JDε1K consisting of the shaded

vertices of priority 4 and the non-shaded vertices of priority 2 does not form a trap

for Steven as Steven can escape to H
ε2
D . The decomposition E in Fig. 6.3(b) is not an

attractor decomposition because T
ε
E contains the vertex of priority 5 and this vertex

is not in the Steven attractor to H
ε
E .
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6.2 Valuation using leafy trees

Our goal of introducing the concept of decompositions was to construct a valuation

using it. To achieve this goal, we need these decompositions to have a (partial)

ordering between them. In this regard we first define a modification of a given tree T ,

called the leafy tree of T . The nodes of these leafy trees also have a total order.

We argue that a T -decomposition uniquely defines a specific map from vertices into

leafy tree of T . Further, this map defines a partial order between decompositions

which is inherited from the order on leafy trees.

Leafy trees. We define the leafy tree of a (labelled) tree T as the tree, which in

addition to all nodes in the tree T , contains two new children η
S

and η
T

for each

node η in the tree T and a unique distinct element ⊤. These newly introduced

nodes η
S

and η
T

are declared to be the smallest and the largest of the children of

each node η and ⊤ treated as the last child of the root of T . More formally, we say

L (T ) is the leafy tree of T where

L (T ) = ⋃
η∈T

{η, ηS , ηT } ∪ {⊤}.

The order of elements in L (T ) is inherited from the tree order on T . The underlying

tree order induces a total order on the set of all nodes of L (T ) with ⊤ as the largest

element.

Observe that unlike the trees we had considered so far, leafy trees are not

always equitable. Nonetheless, we extend some definition to leafy trees L(T ) of

an equitable tree T . We say even (resp. odd) level of η
S

to be one more than

the even (odd) level of η and the even (odd) level of η
T

to be one less. The even

(resp. odd) level of ⊤ is one more than that of the even (odd) level of the root.

Fig. 6.4(b) illustrates the leafy tree of a tree with three leaves, which can be seen as

an N-labelled tree whose nodes are {⟨⟩ , ⟨1⟩ , ⟨2⟩ , ⟨1, 1⟩ , ⟨2, 1⟩ , ⟨2, 2⟩}.

For an element x of L(T ) and p, a number that is at most the even level of

the tree, we define next (x, p) to be the smallest element in L(T ) that is larger than

x which has even level exactly p. For an element x in L(T ) and an even value p, we

define x∣p (similar to Chapter 4) to be the ancestor of x at level p. If the current

node x has a level larger than p, then we define it to be x.

A strategy respecting decomposition. Recall that a strategy of Audrey in a

game G is a set of some edges outgoing from Audrey’ vertices and all edges outgoing

from Steven’s vertices. We define the restriction of a game G to a positional strategy
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(a) A representation of an (ε, T )-
decomposition of a game

16

17

18 19

(b) The tree T and its leafy tree L (T ) with
level and order.

ρ as the same game instead on the arena (V, ρ) where V is the set of vertices of G.

We write G∣ρ to denote this game G restricted to a strategy ρ. Consider a Steven

(η, T )-decomposition D of a parity game G and let ρ be a positional Audrey strategy

in G. We say that this decomposition D is a ρ-respecting decomposition of the game

G, if it is a Steven (η, T )-attractor decomposition of the (restricted) game G∣ρ.

A valuation of a strategy and decomposition pair. Consider a Steven (η, T )-
decomposition D that is ρ-respecting, and node γ of the tree T , which is a descendant

of node η. For each vertex v ∈ H
γ
D ∪ S

γ
D ∪ T

γ
D, we determine two values: the first

is a node in the leafy tree and the second is a natural number. In cases where

v ∈ H
γ
D, the second component is automatically declared to be 0. Otherwise, the

second component corresponds to the the length of the shortest path in Gρ from v

to outside the set S
γ
D or T

γ
D that visits the set [Dη] or H

η
, respectively (if there is

no such path, then we declare this length as 1). The first component is γ, γ
S

, or

γ
T

, depending on weather v belongs to H
γ
D, S

γ
D or T

γ
D, respectively.

For an Audrey strategy ρ and a Steven T -decomposition D of an (n, d)-small

parity game G that is ρ-respecting, we define the valuation of val (D, ρ) to be a map

from V to the set M(T ) that we define. This set M(T ) consists of tuples where the

first element of the tuple is from L (T ) and the second element is a natural number

that is at most n − 1. In other words, we would have for each η ∈ T , elements of

the form (η, 0), (ηT , i), and (ηS , i), for all i element of {1, . . . , n − 1}. We make an

exception for the element ⊤ in the leafy tree L(T ), where this is instead considered

as a unique element in M(T ) as well. This space of valuations M(T ) is defined as

M(T ) = {⊤} ∪ ⋃
η∈T

{(η, 0)} ∪ ⋃
η∈T

{ηT , ηS} × {1, . . . , n − 1}.
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(a) Decomposition A (b) Decomposition D

Figure 6.5: Two decomposition of the parity game G in Fig. 6.2(a) with its strategy
edges highlighted

We define the valuation val (D, ρ) (v) as

• (η, 0) if v ∈ H
η
;

• (ηT , i) if v ∈ T
η

where i is the length of the shortest path in G∣ρ from v to

the set H
η
;

• (ηS , i) if v ∈ S
η

where i is the length of the shortest path in G∣ρ from v to the

set [Dη];

• ⊤, for any v not in the set JDK.

The valuation val (D, ρ) is defined only when D is a ρ-respecting decomposition.

An ordering of the valuations. The ordering ⪯ defined on L (T ) is also used to

denote the ordering we had defined on M(T ). For two elements η, η
S

, the elements

(η, 0) ≺ (ηS , 3) in M(T ) since η ≺ η
S

and (ηS , 3) ≺ (ηS , 5), since 3 < 5.

This further naturally defines an ordering ⊑ for the set of all valuations by

extending the ⪯ ordering on M(T ) further to the point-wise ordering over functions

from V to M(T ).
For two strategies ρ and σ of Audrey and for two Steven T -decompositions

D and E of a game G such that D is ρ-respecting and E is σ-respecting, we can

compare the decomposition-strategy pair D and ρ with the pair E and σ by compar-

ing val (D, ρ) and val (E , σ). Moreover, we say val (D, ρ) ⋤ val (E , σ) if val (D, ρ) ⊑
val (E , σ) and val (D, ρ) (v) ≠ val (E , σ) (v) for at least some v.

Example 4. Consider the attractor decomposition A in Fig. 6.5(a) and the decom-

position D in Fig. 6.5(a). Let the Audrey strategy ρ be the one which contains the

edges between

• the shaded priority 2 Audrey vertex and the priority 3 Steven vertex,
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• the unshaded priority 2 Audrey vertex and the adjacent priority 2 vertex,

• the unshaded priority 4 Audrey vertex and the priority 5 Steven vertex, and

• the shaded priority 4 Audrey vertex and the shaded priority 4 Steven vertex

along with all of Steven’s outgoing edges. The edges that are not in the strategy are

dotted.

We then have val (D, ρ) ⊑ val (A, ρ), since the decomposition on all but the

unshaded vertices of priority 2 are the same. For vertices of priority 2, the valuation

of D and ρ at these vertices are (ε11, 0), whereas the valuation of A and ρ at these

vertices are (ε21, 0) for both, which is larger.

In a scenario where val (D, ρ) ⋤ val (E , σ), we say that the valuation of the

strategy and decomposition pair val (E , σ) is strictly improving from val (D, ρ). We

argue that for a fixed strategy σ, there is a minimum decomposition E such that the

valuation val (E , σ) is strictly improving from the valuation val (D, ρ). The lemma

below shows that such a minimum decomposition exists. If the strategy σ is clear

from context, we also just say the decomposition E is strictly improving, rather than

the valuation val (E , σ).

Lemma 6.2.1. Given two (η, T )-decompositions D and E of an (n, d)-small parity

game such that both are σ-respecting decompositions for a Steven strategy σ, there

is a σ-respecting decomposition F such that val (F , σ) = min{val (D, σ) , val (E , σ)}.

Proof. Consider the function f defined from the vertex set V to M(T ) as f(v) =

min{val (D, σ) (v), val (E , σ) (v)}, for each vertex v. Now, we define F to be the de-

composition such thatH
γ
F = { v ∣ f(v) = (γ, 0) }, T

γ
F = {v ∣ f(v) = (γT , i) for some

i} and S
γ
F = { v ∣ f(v) = (γS , i) for some i }. We show that F is a σ-respecting de-

composition and also that val (F , σ) = f = min{val (D, σ) , val (E , σ)}.

We show using an induction on the number of nodes in the tree. Our induc-

tion hypothesis is that for all v, if f(v) = min{val (D, σ) (v), val (E , σ) (v)} ⩾ (η, 0),
then F so constructed is an (η, T )-decomposition. The base case is established

by the simple observation that the induction hypothesis is true if η is the leaf of

the tree T . To show that F satisfies the conditions of an attractor decomposition

on restricting G to σ. We list the properties as in the definition of an attractor

decomposition (in order) and show that they are satisfied.

1. The corresponding sets form a partition follows from the fact that f is a map

into the leafy tree.

89



2. [Fη] is a trap for Steven. Indeed, due to our assumption, for all vertices v,

f(v) ⪰ (η, 0). Therefore, since [Fη] since it contains [Dη] ∪ [Eη], [Fη] is

exactly [Dη]∪ [Eη] . The union of two traps for Steven is still a trap for him.

H
η
F consists of vertices of priority equal to the even level of η. Moreover, note

that all vertices v in H
η
D or H

η
E consists of the minimal elements for val (D, σ)

and val (E , σ) respectively.

3. H
η
F only consists of vertices of priority at most d since both H

η
D and H

η
E only

contains vertices of priority at most d.

4. There is a path from T
η
D and T

η
E , which visits H

η
F = H

η
D ∪H

η
E . T

η
F consists of

(T ηD ∪ T
η
E ) \ Hη

F . Therefore, there is a Steven-reachability strategy from T
η
F .

This means that there is a path from each vertex in T
η
F , which visits H

η
F .

5. there is a Steven-reachability strategy from S
η
F to [Fη] in the subgame G and

this can be shown by using arguments similar to those used in item 4.

Since η1 is the smallest child of η after η
T

, we know that for vertices v in G1 =

G \ (Hη
F ∪ T

η
F), we have f(v) ⩾ (η1, 0). Henceforth, we assume for each v ∈ Gi, we

have f(v) ⩾ (ηi, 0). For i = 1, . . . `, we can show that

6. if Ri is the set of vertices in Aηi
F . then Ri forms a trap. This again follows

from “additive” property of traps, similar arguments to arguing that [Fη] was

a trap;

7. the decomposition Aηi
F is in fact an (ηi, T )-attractor decomposition of Ri due

to our inductive assumption;

8. on setting Gi+1 = Gi \Ri, we are now only left with vertices v ∈ Gi+1 such that

f(v) ⪰ (ηi+1, 0).

The fact that val (F , σ) = min{val (D, σ) , val (E , σ)} follows from the definition of

the decomposition F .

We say that a Steven decomposition D is a minimum ρ-respecting decom-

position of G if the valuation val (D, ρ) is the point-wise minimum among the set of

all ρ-respecting decomposition. Given a ρ-respecting Steven decomposition D and a

strategy σ such that D is not σ-respecting, there is a unique E , which is σ-respecting

and also satisfies two properties: (1) val (E , σ) is strictly improving from val (D, ρ)
and (2) val (E , σ) is the minimum among the set of all σ-respecting decompositions

F whose valuation val (F , σ) is strictly improving from val (D, ρ). The uniqueness

follows from Lemma 6.2.1. We therefore define a decomposition E as minimally
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σ-improving from val (D, ρ) if the valuation val (E , σ) is the minimum among all

σ-respecting decompositions F of G such that val (F , σ) is strictly improving from

val (D, ρ), in other words, it satisfies the above two conditions.

6.3 Strategy iteration with decompositions

Having defined the valuation for a strategy and a decomposition, we turn our atten-

tion to describing the strategy iteration algorithm based on this valuation. We give

a high-level view of this algorithm, which is later described more formally in Algo-

rithm 2. The algorithm takes as input an (n, d)-small parity game G and has access

to a tree T whose root η has even level d. It starts with an Audrey strategy ρ,

chosen using an arbitrary policy. Following this, a minimum ρ-respecting (η, T )-
decomposition D of G is computed. Since the decomposition must be ρ-respecting,

it is an attractor decomposition of the restricted game G∣ρ. This can be done using

methods proposed by Proposition 6.1.2, as any game where Audrey has no choice

has a “simple” attractor decomposition.

At each iteration, with the help of a ρ-respecting decomposition D, we pick

a new Audrey strategy σ, using the procedure Improved-Strategy. For such

Audrey strategies σ and ρ using decomposition D, we find the minimally σ-improving

decomposition E from the valuation val (D, ρ). The iterative process restarts, but

now with the strategy σ and the newly computed σ-respecting decomposition E
instead. The algorithm terminates when the decomposition found is an attractor

decomposition of the input game, or equivalently, the decomposition computed at

the end of an iteration is σ-respecting for every Audrey strategy σ.

Algorithm 2 Decomposition based strategy iteration algorithm

Input: A game G. ▷ The algorithm has access to the tree T
Output: An attractor decomposition D of G.
1: procedure Strategy Iteration(G)
2: ρ← an arbitrary strategy of Audrey.
3: D ← minimum ρ-respecting decomposition of G
4: repeat
5: σ ← Improved-Strategy(G,D, ρ)
6: E ←Minimal-Improve(G∣σ, val (D, ρ) , η)
7: ρ← σ
8: D ← E
9: until D is an attractor decomposition of G

10: return D
11: end procedure
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There are two subroutines of the algorithm above that need to be discussed.

Firstly, we describe an algorithm that picks the next strategy σ in the procedure

Improved-Strategy (Algorithm 3). Secondly, we need to find a decomposition E
that is minimally σ-improving from val (D, ρ). This is described later in procedure

Minimal-Improve (Algorithm 4).

Violating edges. To understand the procedure Improved-Strategy, which

picks the strategy σ, we need the definition of a violating edge. Intuitively, an

edge is violating with respect to a valuation if, along this edge, the valuation is

‘non-decreasing’. An edge u → v of the game G with a T -decomposition is said to

be violating with respect to a valuation val (D, ρ) if

• u ∈ S
η

or T
η

and val (D, ρ) (v) ⪰ val (D, ρ) (u), or

• u ∈ H
η

and val (D, ρ) (v) = (x, i) where x ⪰ η
S

.

Observe that no edge in ρ can be violating with respect to val (D, ρ), since D is

ρ-respecting. The procedure Improved-Strategy picks an Audrey strategy σ by

swapping some (at least one) strategy edges in ρ for edges that are violating with

respect to val (D, ρ) as described below.

Algorithm 3 Returns a strategy σ that increases valuation in the next step

Input: A game G, a decomposition D, and a (Steven) strategy ρ.
Output: A (Steven) strategy σ of G.
1: procedure Improved-Strategy(G,D, ρ)
2: Evio ← {(u, v) ∣ u is an Audrey vertex and (u, v) is violating in val (D, ρ)}
3: σ is an Audrey strategy with at least one edge from Evio and rest from ρ. ▷

The switching policy can be selected based on an algorithm, choosing to include
a strict subset of all violating edges.

4: return σ
5: end procedure

The main technical challenge once an Audrey strategy σ is selected is in

finding a minimum σ-improving decomposition from valuation val (D, ρ). We de-

scribe an algorithm to find such a decomposition E with the help of the following

definitions.

The anchor of cycle-winners. For a parity game where Audrey has no choice,

we call cycle-winners for Steven the subset of vertices of the game that are even

and have the highest priority in some (simple) cycle. Computing the set of cycle-

winners can be done in time O(md). In the work of Koh and Loho [KL22], cycle-
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winners at each step are fixpoints while performing a hybrid of progress-measure

lifting and strategy improvement algorithms.

For constructing the T -decomposition E that is the minimally σ-improving

decomposition from val (D, ρ), we also make use of such cycle-winners of the re-

stricted game G∣σ. As a first step to compute this decomposition E , we define a

(σ,D)-anchor denoted by OσD, which is a map from the set of cycle-winners of the

game G∣σ to the nodes of the leafy tree L(T ) that are also nodes in the tree T .

Intuitively, it maps all the cycle-winners of G to the smallest skeleton node whose

even level is equal to its priority and is at least as large as its current valuation

val (D, ρ) when restricted to its first component. For a cycle-winner v in G∣σ, we

define the (σ,D)-anchor as

OσD(v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

η if v ∈ H
η

next (ηS , π(v)) if v ∈ S
η

next (ηT , π(v)) if v ∈ T
η
.

Since the first component of val (D, ρ) (v) is at least as large as OσD(v), it is an

“upper bound” for the first component of val (D, ρ) (v) restricted to cycle-winners.

We remark here that this map also turns out to be such an “upper bound” for the

first component of the valuation val (E , σ).

A description of Minimal-Improve. The procedure Minimal-Improve

on a game G, identifies the set R of all cycle-winners such that η is an ancestor of

their (σ,D)-anchor. Three different sets with respect to R are computed.

1. the set S of vertices with a path to R, but all paths that reach R visit a vertex

with the highest odd priority d + 1;

2. the set H of vertices of priority d that can reach a vertex in R, but without

seeing any vertex of priority larger than d; and

3. the set T of vertices with a path to H, but which encounter vertices of priority

at most d − 1 along the path.

On removing these three sets S, H, and T , the same process is repeated for each

child ηi of node η in the tree, returning the respective (ηi, T )-decompositions. The

algorithm finally returns the decomposition E obtained as ⟨H,T, ⟨E1, . . . , Ek⟩ , S⟩.
Vertices that cannot reach a cycle-winner are losing for Steven not only in the

restricted game G∣σ, but also in the larger game G. This is because Audrey has a
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strategy σ from each of these vertices, that ensures that Steven cannot win from

them. We assume that while computing the set of cycle-winners, these vertices are

removed by the algorithm and returned as winning for Audrey.

Algorithm 4 Returns the smallest minimally σ-improving decomposition E
Input: (n, d)-small parity game G obtained by restricting game to Audrey strategy

σ, a decomposition D of G, and node of even level of η in the underlying tree T .
Output: A subset of vertices W and its decomposition E .
1: procedure Minimal-Improve(G, D, η)
2: R ← {v ∣ η is an ancestor of OσD(v)}
3: H ← all priority d vertices with a path in G⩽d to R
4: T ← all vertices of priority ⩽ d − 1 with a path in G⩽d to H
5: W ← H ∪ T
6: G1 ← G \W
7: for each child η1, . . . , ηk of η in order do
8: (Wi, Ei)←Minimal-Improve(G⩽d−1i , D, ηi)
9: Gi+1 ← Gi \Wi

10: W ←W ∪Wi

11: end for
12: S ← vertices for which all paths to W visit a priority d + 1 vertex
13: W ←W ∪ S
14: return (W , E = ⟨H,T, (E1, . . . , Ek) , S⟩)
15: end procedure

6.4 Correctness and running time of the algorithm

Our key contribution can be summarised by the following theorem.

Theorem D. For a parity game G with n vertices, d priorities, and a tree T of even

level d, each iteration of the strategy iteration algorithm (Algorithm 2 on page 91)

takes time Õ(∣G∣d). The valuation (of the decomposition and strategy maintained)

at each step is strictly improving. The algorithm terminates with a T -attractor

decomposition of G within n
2∣T ∣ iterations.

We provide lemmas and propositions that form a building block for the proof

of correctness and runtime of our algorithm. Computing the runtime of this algo-

rithm is easily tackled with the following propositions.

Proposition 6.4.1. For an (n, d)-small parity game G and a decomposition D and

an Audrey strategy σ, computing OσD takes time O(md), where m is the number of

edges in G.
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We assume that the procedure Minimal-Improve computes the set of cycle-

winners as well as the (σ,D)-anchor OσD in advance as it takes time O(md).

Lemma 6.4.2. The procedure Minimal-Improve on an (n, d)-small game returns

an output decomposition in time at most O(md log n)

Proof. We assume the set of all cycle winners are computed and also arranged in

ascending order of the value of OσD. Comparing each value takes O(d) time and

therefore sorting takes at most time O(md log n) and does not increase the claimed

asymptotic runtime.

The algorithm’s most crucial part outside the recursive call is identifying the

set R and later, once this set of vertices R is identified, computing H, T and S.

A naive analysis would indeed give us an unpleasant run-time of O(mnd). There

are nd many possible values for η, and each η requires us to compute R, and its

associated sets H, T and S, which would take O(m) time each. But, we show an

amortised runtime of our algorithm is O(md log n).
Once the cycle-winners are arranged in ascending order of their OσD values,

finding R for each sub-call on the node η amounts to doing a binary search for the

interval which contains the values where η is an ancestor of OσD. This takes d log n

time, since comparison takes time d and the binary search part takes O(log n) time.

The crux of our argument reduces to showing that each edge is touched at

most O(d) times overall outside of the operations discussed above. For this, we first

make the following observations. Consider a vertex u in the game. It can reach

some cycle-winner as the game is winning from every vertex. Suppose v is the cycle-

winner that has the smallest anchor value OσD(v) among all cycle-winners that u can

reach. Let η be this value OσD(v). In the decomposition E , we have that u ∈ H
γ
E or

T
γ
E or S

γ
E where γ = η∣p for some even p. Such a value p is the largest value such

that (1) there is a path in G⩽p from u to v, or (2) there is a path in G⩽p+1. This is

because by assumption, there is no path from u to any cycle-winner with a smaller

value with respect to OσD.

We assume computing the reachability set is done using a backwards manner,

that is, all the predecessors are iteratively added in a queue and the traversal is done

using a BFS algorithm but for the revered graph G. This is reminiscent of attractor

computing algorithms for a game, that start from a target set and considers edges

in reverse order. In this case, each vertex with an edge from vertex u is considered

in either reachability set for at most d calls, one for each ancestor of the smallest

cycle-winner that u can reach. Once it is identified as being in any of the sets H
γ
E ,

T
γ
E or S

γ
E , it is removed from the current set of vertices. This ensures that each
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edge with u as a source is touched at most O(dδ) times, where δ is the outdegree

of u. The same holds for any vertex u, thus bounding the ammortised runtime by

O(md log n).

Our most technical lemma is stated below, but we postpone the proof to

later in the section.

Lemma 6.4.3. Algorithm 2 on input an (n, d)-small parity game G and a tree T
of even level at least d, satisfies the mono-variant that the the valuation val (D, ρ)
obtained from the Steven T -decomposition D of G in Line 8 and Audrey strategy ρ in

Line 7 is strictly improving from tuple formed by the valuation of the decomposition

and strategy in the previous iteration.

Assuming Lemma 6.4.3, and writing Dk and ρk to denote the values of D
and ρ at the end of the k

th
iteration, we get val (D1, ρ1) ⋤ val (D2, ρ2) ⋤ ⋅ ⋅ ⋅ ⋤

val (Dk, ρk). There can be at most n(2n − 1)∣T ∣ many functions from V →M(T ),
the number of iterations cannot be larger than n(2n − 1)∣T ∣. The algorithm ter-

minates when D is an attractor decomposition. Since each step takes O(md log n)
according to Lemma 6.4.5 time our algorithm also takes time Õ(md(2n − 1)∣T ∣).

For all Audrey strategies ρ, an attractor decomposition A is ρ-respecting. We

can show inductively that for the k
th

iteration, val (Dk, ρk) ⊑ val (A, ρk). Since we

start from the smallest possible decomposition, and increase minimally at each step,

we reach the attractor decomposition with the smallest valuation for all strategies

ρ.

Tight, wobbly and stretched. Given a ρ-respecting decomposition D of a game

G, an edge u→ v of a game G is said to be tight with respect to val (D, ρ) if

• val (D, ρ) (u) = (ηS , i) and val (D, ρ) (v) = (ηS , i − 1) for i ∈ [1, n− 1] and we

say (ηS , 0) ≡ (η, 0); or

• val (D, ρ) (u) = (ηT , i) and val (D, ρ) (v) = (ηT , i − 1) for i ∈ [1, n− 1] and we

say (ηT , 0) ≡ (η, 0); or

• val (D, ρ) (u) = (η, 0) and val (D, ρ) (v) = (x, i) such that x∣π(u) = η.

Intuitively, an edge u → v is tight with respect to a valuation if the valuation of u

was any smaller, the edge would be violating.

If there is an edge in a decomposition val (D, ρ) that is neither tight nor

violating, we call the edge wobbly. We call an Audrey positional strategy σ stretch-

ed with respect to val (D, ρ) if the strategy σ (which consists of all of Steven’s edges

along with one edge from each of Audrey’s vertices) has no wobbly edges.
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Proposition 6.4.4. Given a game G, an Audrey strategy ρ and D, a ρ-respecting de-

composition, then Improved-Strategy(G,D, ρ) returns a strategy σ that is stretch-

ed with respect to val (D, ρ).

Remark 4. Any edge u → v in G∣σ where σ is stretched with respect to val (D, ρ)
is such that

• val (D, ρ) (u) = (ηS , k) and val (D, ρ) (v) ⩾ (ηS , k − 1) or

• val (D, ρ) (u) = (ηT , k) and val (D, ρ) (v) ⩾ (ηT , k − 1) or

• val (D, ρ) (u) = (η, 0) and val (D, ρ) (v) = (x, i) such that x∣π(u) ⩾ η.

So far, we have observed that Improved-Strategy returns a stretched de-

composition. Our next key lemma states that for a stretched decomposition D with

respect to σ, the procedure Minimal-Improve(G, T , σ,D) returns the respective

minimum σ-improving decomposition from the current strategies.

Lemma 6.4.5. Given a game G, a ρ-respecting Steven decomposition D, and an

Audrey strategy σ that is a stretched with respect to the valuation val (D, ρ), the

procedure Minimal-Improve(G, T , σ,D) returns the minimum σ-improving decom-

position E from val (D, ρ).

To prove the lemma, we break it down further into two propositions, Propo-

sitions 6.4.6 and 6.4.7 which lead to the proof of lemma 6.4.5.

Henceforth we assume these lemmas are stated for a game G, a strategy

ρ of Audrey, a ρ-respecting decomposition D, and a strategy σ that is stretch-

ed with respect to val (D, ρ). Let A be the minimum σ-respecting decomposition

with respect to val (D, ρ).
Proposition 6.4.6 states that the anchor of a cycle winner helps find an upper

bound on the value of the valuation of such a minimally σ-improving decomposition

A in cycles. Later, Proposition 6.4.7 extends this to not just cycles but to vertices

with paths to such cycles.

Proposition 6.4.6. For a even cycle C in G∣σ, let η = OσD(v), then

• val (D, ρ) (v) ⩽ val (A, σ) (v) ⩽ (η, 0), where v is a cycle-winner in the cycle

C, and

• val (D, ρ) (u) ⩽ val (A, σ) (u) ⩽ (ηT , k), for any u in the cycle C, and where k

is the length of the path from u to some vertex of priority d in C.
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Proof. The first half of both of the inequalities that val (D, ρ) (v) ⩽ val (A, σ) (v)
and val (D, ρ) (u) ⩽ val (A, σ) (u), follow from A being the minimum σ-respecting

decomposition with respect to val (D, ρ).
To show val (A, σ) (v) ⩽ (OσA(v), 0), we construct a σ-respecting decomposi-

tion B such that (1) val (D, ρ) ⊑ val (B, σ) and (2) val (B, σ) (v) = (OσA(v), 0). Since

the valuation of A is smaller than any B that is σ-respecting, the inequality follows.

Since v is a cycle-winner, there is a cycle C where v has the highest even

priority d in the cycle. Let the cycle C consists of vertices u0, . . . , u` and the edges

in the cycle are from each ui and ui+1. Moreover, we refer to v as both u0 and u`+1

in our proof.

We define a σ-respecting decomposition B by defining two sets corresponding

to the partitions of the decomposition as follows: H
η
B = {u ∣ u is a cycle-winner of C}

and T
η
B = {u ∈ C ∣ u is not a cycle-winner of C}. All the other sets in the decompo-

sition are declared to be empty. Observe now that the valuation of such a B above

along with the strategy σ can be deduced to be

val (B, σ) (u) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(η, 0) u is a cycle-winner of C

(ηT , k) u has distance k to the set of all cycle-winner in Gσ
⊤ u ∉ C.

We remark that in the cases where u is not a cycle-winner, but can reach one, k

denotes the length of shortest path in Gσ to a cycle-winner. To show val (D, ρ) (u) ⩽
val (B, σ) (u), first observe for u ∉ C, these vertices aren’t present in the decompo-

sition and hence its value is set to ⊤. We show val (D, ρ) (u) ⩽ val (B, σ) (u) for

u ∈ C. We prove this using induction along with the fact that D is a stretched de-

composition.

Base Case. For vertices u in the cycle whose shortest path to a cycle-

winner of C is 0, we know val (B, σ) (u) ⩽ (η, 0) by definition. Let us assume

(ηT , 0) to also represent (η, 0) henceforth.

Induction step. If for each vertex w in the cycle C, if the shortest path

from w to a cycle-winner of C is i and val (D, ρ) (w) ⩽ (ηT , i), then for for vertices

u in the cycle whose shortest path to a cycle-winner of C is i + 1, from Remark 4,

val (D, ρ) (u) ⩽ (ηT , i + 1).

Since σ-respecting decomposition labellings are closed under point-wise min-

imum from Lemma 6.2.1, the minimal σ-respecting decomposition A larger than
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val (D, ρ) should also be such that val (D, ρ) (v) ⩽ val (A, σ) (v) ⩽ val (B, σ) (v).

Proposition 6.4.7. For a cycle-winner v of Gσ that has priority p and for some

vertex u is such that (1) u has a greater even priority than p, that is, π(u) = d ⩾ p,

where d is even and (2) there is a path from u to v in G∣⩽dσ , then

• val (D, ρ) (u) ⩽ (η, 0); where η = OσD(v)∣d.

Moreover, val (D, ρ) (w) ⩽ (ηT , k), for any w that has a k-length path to u.

Proof. Consider a path from u to v in (G∣σ)⩽d: u→ u1 → u2 → ⋅ ⋅ ⋅→ uk = v. Since

σ is stretched with respect to val (D, ρ), from Remark 4, we know that if we let the

first component of val (D, ρ) (ui) be xi then we have x1∣d ⩽ . . . xi∣d ⩽ xi+1∣d ⩽ . . . ⩽
xk∣d ⩽ OσD(v)∣d = η. This shows val (D, ρ) (u) ⩽ (η, 0).

To show val (D, ρ) (w) ⩽ (ηT , k) is very close to the inductive proof in Propo-

sition 6.4.6. This is done by the induction on the length of the shortest path to u.

Using Propositions 6.4.6 and 6.4.7 as building blocks, we prove Lemma 6.4.5.

We restate the lemma again for convenience below.

Lemma 6.4.5. Given a game G, a ρ-respecting Steven decomposition D, and an

Audrey strategy σ that is a stretched with respect to the valuation val (D, ρ), the

procedure Minimal-Improve(G, T , σ,D) returns the minimum σ-improving decom-

position E from val (D, ρ).

Proof. Let A be the minimal σ-respecting decomposition with respect to val (D, ρ).
We argue that val (E , σ) = val (A, σ) where E is constructed by the procedure

Minimal-Improve(Gσ, η,OσD).

Induction hypothesis. If for each vertex v, val (D, ρ) (v) ⩾ (η, 0) then

Minimal-Improve(G∣σ,D, T , ηi) returns E and W such that

(a) W = {w ∣ val (A, σ) (w)∣ ⩽ (ηS , n − 1)}.

(b) val (E , σ) (w) = val (A, σ) (w) for all w ∈W .

To show point (b) above is equivalent to showing that when restricted to W ,

we have val (E , σ) ⊑ val (A, σ) and E is a σ-respecting decomposition such that

val (D, σ) ⊑ val (E , σ). The second part of the statement follows because if E is a

σ-respecting decomposition whose decomposition labelling is larger than that of D,

and is also an attractor decomposition, from the closure under minimum of attractor

decomposition (Lemma 6.2.1), we also get val (A, σ) ⊑ val (E , σ).
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Showing H
η
E = H

η
A. The set H consisting of all vertices of priority d that have a

path to a some cycle-winner, v such that OσD(v)∣d = η is then identified. From Propo-

sition 6.4.7, we know that for all v ∈ H, we have val (D, σ) (v) ⩽ val (A, σ) (v) ⩽
(η, 0). Consider any path from v to u. Since by assumption, we know for all vertices

w in G val (A, σ) (w) ⩾ (η, 0), we know val (A, σ) (v) = (η, 0) for all v ∈ H. Since

E(v) = (η, 0), for all v ∈ H, we have val (A, σ) (v) = val (E , σ) (v) for all v ∈ H.

We show that for any u ∉ H, val (A, σ) (v) > (η, 0). Consider any path

from u, of priority d = Even-level (η), consisting of only tight edges with respect

to val (A, σ) from some vertex valued at (η, 0) by val (A, σ). This leads to an even

cycle, let w be a cycle-winner of such an even cycle. We show that OσD(w)∣d ⩽ η,

which ensures that u ∈ H. Indeed for the path u → u1 → u2 → ⋅ ⋅ ⋅ → uk = v,

where all edges are tight, for each i that we have xi∣d = xi+1∣d, where xi is the first

component of val (D, σ) (ui).

Showing T
η
E = T

η
A. T consists of vertices in the game that have a path in (Gσ)⩽d

to the set H. We know from Proposition 6.4.6 that val (D, ρ) (u) ⩽ val (A, σ) (u) ⩽
(ηT , k) where k is the length of the shortest path in G⩽d to some vertex in H.

We can also show val (A, σ) (u) ⩾ (ηT , k). For this, we only need to follow

tight edges with respect to val (A, σ) from u. If these tight edges lead to some vertex

such that val (A, σ) (v) = (η, 0), then we know this path has length at least k and

therefore val (A, σ) (u) ⩾ (ηT , k). If the first skeleton node encountered by such a

tight path is not η, and instead η
′
, we know η

′
> η, since η is the root node of the

tree, and hence val (A, σ) (u) ⩾ (η′, 0) > (ηT , k). This ensures that T is exactly the

set of vertices valuated by val (A, σ) to (ηT , k) for some k. Since k corresponds to

path lengths, it cannot be larger than ∣V ∣ − 1.

Showing Ei = Ai. For each child ηi of η, we call (Wi, Ei) to be the output

by Minimal-Improve ((Gi)∣σ,D, T , ηi), We will show that if for all i < j if

(a) Wi = {w ∣ val (A, σ) (w) ⩽ (ηiS , n − 1) } and (b) Ei∣Wi
= Ai∣Wi

,

then

(i) Wj = {w ∣ val (A, σ) (w) ⩽ (ηjS , n − 1) } and (ii) Ej∣Wj
= Aj∣Wj

.

For a base case, observe that val (A, σ) (v) ⩾ (η1, 0) for all vertices v ∈ G⩽d−11 .

From our induction hypothesis the above two conditions (i) and (ii) follow for j = 1.

For j > 1, notice that G⩽d−1j consists of vertices not in any Wi for i < j. More-

over, it consists of no vertex in H
η
A or T

η
A. Hence, for vj ∈ G⩽d−1j , val (A, σ) (vj) ⩾
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(ηj , 0). And thus, (Wj , Ej) = Minimal-Improve ((Gi)∣σ,D, T , ηi) by induction

hypothesis satisfies the above conditions.

Showing S
η
E = S

η
A. Observe that S

η
E = S which consists of vertices for which all

paths to R visit a priority d+ 1 vertex. For each vertex v ∈ S, let k be the shortest

length path to some u such that u in turn has a path that visits R without seeing

a vertex of priority d + 1. Indeed such a path must exist since all vertices in R

themselves have priority at most d. We argue that val (D, ρ) (v) ⩽ val (A, σ) (v) ⩽
(ηS , k).

For any u that has a path that visits R without seeing a vertex of priority

d + 1, we have val (D, ρ) (u) = (x, i), where x∣d ⩽ η, and therefore u must be in

either H, T or Wi for some i. Hence val (A, σ) (u) ⩽ (x, i) for x ∈ L (T ) such that

x∣d = η.

Suppose the shortest path from v to u has length 1, then such a v must have

priority d + 1. Since val (A, σ) (u) ⩽ (x, i) for x ∈ L (T ) such that x∣d = η, this

implies val (A, σ) (v) ⩽ (ηS , 1).

The proof that a vertex which has a path of length k and not shorter path to

some vertex u above satisfies val (A, σ) (v) ⩽ (ηS , k) follows from routine induction.

Similar to the arguments for T , by following tight edges for some v ∈ S, we

can also conclude that S is also exactly the set of vertices such that val (A, σ) =
(ηS , k) for some k.
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Chapter 7

An asymmetric attractor based

algorithm

Progress-measure lifting algorithms for solving parity games have the better worst-

case asymptotic time and space complexity [Jur00, JL17, FJdK
+

19, DS22] compared

to the symmetric attractor-based algorithms [McN93, Zie98, LPSW22, JMT22]. On

the other hand, attractor-based algorithms, and more specifically the McNaughton-

Zielonka algorithm [McN93, Zie98], consistently outperform other algorithms in

practice while having exponential running time in the worst-case [vD18, FJdK
+

19,

BDM18]. A natural conjecture for the reason behind the success of several attractor-

based algorithms, and especially McNaughton-Zielonka, could be attributed to re-

peated computation of attractors. Computing attractors in itself is a relatively fast

operation and such computations performed during the algorithm can remove large

sets of vertices resulting in smaller subgames to work with. However, attractor-

based algorithms, even the quasi-polynomial ones, have a worst case running time

that is approximately the square of the running time complexity of similar progress-

measure-based algorithms.

In this chapter, we propose a new attractor-based algorithm with the aim of

achieving practical efficiency through repeated computation of attractors, alongside

possessing theoretical guarantees that align with state-of-the-art algorithms. But

unlike other McNaughton-Zielonka-like algorithms, our algorithm is an “asymmet-

ric” algorithm that builds only the attractor decomposition for one player. Our

definition of an attractor decomposition is based on ordered trees, and for an ap-

propriate universal tree T , a parity game always has a T -attractor decomposition.

Our algorithm is parameterised by trees whose branching dictates the recursive calls

made. Unsurprisingly, when instantiated with an appropriate universal tree T , our
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algorithm builds a T -attractor decomposition. The running time complexity of our

algorithm is linear in the size of such a tree underlying the game and polynomial in

the size of the game. Our algorithm, when the underlying trees are complete trees,

produces an exponential algorithm whose running time is comparable to the Jur-

dziński’s progress measure algorithm (up to a polynomial factor), but computes the

attractor decomposition output by (an enhanced version of) McNaughton-Zielonka.

The same algorithm has worst-case running time that matches the running time

(up to a polynomial factor) of state-of-the art algorithms like that of Jurdziński

and Lazić [JL17] if the underlying tree is the Jurdziński-Lazić universal tree, or the

runtime of our algorithm in Chapter 5 if the underlying tree is the Strahler Univer-

sal trees [DJT20]. In contrast, symmetric attractor based algorithms whose mutual

recursive calls are dictated by similar recursive trees take time that is a square of

such universal trees instead.

Our key ingredient to achieve this algorithm is using the notion of a de-

composition of a game. This concept, as introduced in Chapter 6, is a relaxation of

attractor decompositions. In our recursive algorithm, these decompositions are used

to encode the progress made in previous recursive calls. Instead of restarting each

recursive call from scratch, we use decompositions to expedite the process and serve

as a succinct, yet robust encoding of the progress that was made in earlier recursive

calls. This modification to the decomposition during each recursive call is done in a

careful manner so as to satisfy monotonicity requirements which help us argue that

our algorithm terminates faster than versions that do not use such decompositions.

The idea of reusing information from previous recursive calls for algorithms

that solve parity games has been touched upon in works as early as the 1990s. In

fact, Long, Browne, Clarke, Jha, and Marrero [LBC
+

94] proposed the idea of utilis-

ing the information obtained from earlier recursive calls to aid subsequent recursive

calls. They tackled the challenge of model checking modal µ-calculus formulas, a

problem that is polynomial time equivalent to solving parity games. Their algo-

rithm had a running time of O(nd/2), which was a quadratic improvement over the

best algorithm obtained by solving parity games via McNaughton-Zielonka algo-

rithm [McN93, Zie98, EL86]. Nonetheless, their approach suffered from exponential

space complexity. Similar to our approach, they heavily rely on monotonicity ar-

guments to demonstrate faster termination. However, our algorithm distinguishes

itself by requiring only polynomial space, as well as performing repeated computa-

tion of attractors. Furthermore, when instantiated with quasi-polynomial universal

trees, our algorithm achieves theoretical complexity comparable to the state of the

art.
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7.1 Finding attractor decompositions

Attractor decompositions are witnesses of winning for parity games and we begin

by asking a natural question about them.

Question 7.1.1. For a tree T and an (n, d)-parity game, can we compute a canon-

ical (η, T )-attractor decomposition for G?

The above question without the word canonical is trivial, since we can create

an (η, T )-attractor decomposition by just declaring most parts associated with such

a decomposition to be empty to form a T -attractor decomposition. Given a tree, we

therefore want to find the “best” attractor decomposition, or one that identifies the

largest possible winning set for this tree. We describe an algorithm that does that.

The reader can find similarities between Algorithm 5 below and the McNaughton-

Zielonka algorithm [McN93, Zie98]. More specifically, we remark without further

proof that it closely resembles the Jurdziński-Morvan algorithm, where one tree is

the complete tree and the other tree is the tree T .

Algorithm 5 Computes an attractor decomposition of G
Input: A game G (with maximum even priority d), a node η (of even level d) in

the tree T .
Output: An attractor decomposition of G.
1: procedure AttractorDecomposition(η, G)
2: S ←all vertices in the Audrey attractor of all vertices of priority d + 1
3: H

η
← all vertices in G \ S of priority equal to the level of η

4: T
η
← vertices in the strict Steven attractor to H

η
in G \ S

5: W ← T
η ∪Hη

6: for each child η1, . . . , ηk of η in order do
7: Ai ←AttractorDecomposition(ηi, G \ (S ∪W ))
8: W ← JAηi

i K
9: W ←W ∪Wi

10: end for
11: A

′
← Audrey attractor to G \W

12: if A
′ ∩W = ∅ then

13: S
η
← vertices in the strict Steven attractor to W in G

14: W ←W ∪ Sη

15: return (W, ⟨Hη
, T

η
, (A1, . . . ,Ak) , Sη⟩)

16: else
17: return AttractorDecomposition(η, G \A′)
18: end if
19: end procedure

For each node η of the tree, the set of vertices S from which Audrey has a
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strategy to visit a priority vertex d + 1 is first removed from G. In the remaining

game, the algorithm identifies some sets of the attractor decomposition the set H
η

of vertices of the highest priority and the set: T
η

of vertices that are in the (strict)

Steven attractor to H
η
. Excluding the above vertices, for each child ηi of η, we

obtain recursively the (ηi, T )-attractor decomposition of the subgame induced a

subset of vertices Wi.

The algorithm then checks if the set W consisting of H
η

and T
η

along with

all the sets Wi forms a trap for Audrey. If W is indeed a trap for Audrey, then the

set of vertices that are in the Steven attractor to W is computed and declared to be

S
η
. If instead Audrey can escape W , then the process is restarted after excluding

these vertices.

The correctness of Algorithm 5 can be proved using a routine induction (on

the number of nodes on the tree T ) that the algorithm returns a T -decomposition

A = ⟨Hη
, T

η
, (A1, . . . ,Ak) , Sη⟩ of the largest dominion of G that has a T -attractor

decomposition.

The process terminates as each recursive call is made to a smaller subgame

or, alternatively, with a smaller tree. Although we can show that this process

terminates, we can also show that this procedure has an exponential worst case

complexity. If the time taken for game with n vertices and a tree T which has

height h and ` leaves is denoted by R(n, h, `), then we can deduce that

R(n, h, `) ⩽ R(n − 1, h, `) +R(n1, h − 1, `1) + ⋅ ⋅ ⋅ +R(nk, h − 1, `k) +O(m)

where

• ni denotes the number of vertices made in the call made in the for-loop with

the root ηi, and

• `i denotes the number of leaves of the tree rooted at ηi in T .

Moreover, we assume that if ` = 1 or if n = 0, then R(n, h, `) = 1. Using the fact

that the tree T has height d/2 along with a routine analysis of the above recurrence

shows that the time taken can be bounded by n
d/2∣T ∣. In the next section, we

propose a different, carefully engineered, attractor-based algorithm whose running

time can be bounded instead by a function that is linear in the size of the tree and

polynomial in n.
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7.2 A faster attractor-based asymmetric algorithm

We propose our new procedure in Algorithm 6 where we build on the attractor de-

compositions obtained by earlier recursive calls instead. This is done by maintaining

the decompositions obtained in successive recursive sub-calls and modifying them

until we finally produce an attractor decomposition.

Given an (n, d + 1) parity game G, a tree T , and a node η of the tree that

has an even level d, our algorithm computes the (η, T )-attractor decomposition of

the largest dominion that has an (η, T )-attractor decomposition. The algorithm has

an underlying T -decomposition that it maintains globally, and each recursive call

has access to this decomposition. We also assume that the first external call to this

subroutine initialises the decomposition D where all vertices of priority d+ 1 are in

S
η
D, all vertices of priority d in G are in H

η
D and all the other vertices in G are in

T
η
D.

Algorithm 6 Computes the T -attractor decomposition of the Steven dominion of
G
Input: A game G (with maximum even priority d), a node η (of even level d) in the

tree T . The first external call to this subroutine initialises the decomposition D
where all vertices of priority d + 1 are in S

η
D, all vertices of priority d in G are

in H
η
D and all the other vertices in G are in T

η
D.

Output: An attractor decomposition of G.
1: procedure AAD(η, G)
2: while D is not an attractor decomposition do
3: U ← vertices in the Audrey attractor to S

η
D

4: [Dη]← [Dη]⊖ U
5: S

η
D ← S

η
D ∪ U

6: T ← vertices in the Steven attractor to H
η
D in game [Dη]

7: R ← T
η
D \ T

8: MoveD (R)
9: for each child η1, . . . , ηk of η ∈ T in order do

10: AAD(ηi, [Dηi])
11: end for
12: S ← vertices in the Steven attractor to [Dη]
13: R

′
← S

η
D \ S

14: MoveD (R′)
15: end while
16: end procedure

The decomposition is iteratively modified by the algorithm as described be-

low. In every iteration, in lines 4and 5, the algorithm removes the set of vertices U

that is in Audrey’s attractor to S
η
D in G and adds the vertices in U to S

η
D. This step
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ensures that the subgame [Dη] is an Audrey trap (the complement of an Audrey

attractor is a trap for Audrey). The removal of U is denoted by [Dη]← [Dη]⊖ U ,

which results in the removal of the set U from each of the parts of the decomposition

contained in [Dη]. The vertices in U are added instead to the side-set S
η
D.

In line 6, the Steven attractor T to the vertices H
η
D with highest priority is

computed. Observe that any vertex that is in T
η
D but not in T are vertices from

which Steven does not have a strategy to visit the set of highest priority vertices

H
η
D. Hence, in line 7, vertices R that are currently in top-set T

η
D but not in the

attractor T are identified, and in line 8 this set R is “moved”. The modification

done by Move is defined more rigorously later, but intuitively, after performing

MoveD (R) the decomposition D is changed so that the vertices in R are no longer

in the part T
η
D and relocated to part S

η
or to parts associated with the node γ which

is greater than η. In line 10, recursively, the (ηi, T ) decompositions are computed

for the complement of the game, one after another for each child ηi of the node η.

In line 12, the Steven attractor is computed to the set of vertices that is currently

in [Dη] and in line 13, the set R
′
of vertices in S

η
D but not in the Steven attractor is

computed. These vertices are finally “moved” in the decomposition in line 14 and

the vertices in R
′

are now associated either to the parts corresponding to the next

sibling of η or the side-set of a parent of η if there is no next sibling.

7.2.1 An order between decomposition

Although we compute attractors, our algorithm can also be reformulated as a lifting

algorithm on specific lattices designed for a parity game. We exploit this fact to

show the algorithm’s correctness and running time. The proofs of correctness of the

algorithm and its termination indeed use monotonicity arguments based on a partial

ordering of the set of all decompositions. Therefore, our key technical ingredient

is to define this partial order (for a fixed tree T and a parity game G) on the set

of all (η, T )-Steven decompositions for all nodes η in T . Henceforth, we assume

decomposition to refer only to Steven decompositions by default.

In the previous chapter, we had given a valuation for a tuple consisting of

decompositions D and an Audrey strategy σ for σ-respecting decompositions D. But

here we define a similar ordering on the set of all decompositions without reference

to a strategy.

For a tree T in which all leaves have the same depth, recall the definition

of a leafy tree of T , denoted by L (T ). We use the ordering of a leafy tree’s nodes

again to produce such a partial ordering on the set of all T -decompositions. For

each decomposition D, we define the decomposition labelling of D, denoted by δD,
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as the following map from the vertices to the totally ordered set L(T ) ∪ {⊤}:

δD(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ for v ∈ H
γ
,

γ
T

if v ∈ T
γ
,

γ
S

if v ∈ S
γ
,

⊤ if v ∉ H
γ ∪ T γ ∪ Sγ for all γ ∈ T .

For a game, G, and two (η, T )-decompositions D1 and D2, we say D1 ⊑ D2

if δD1
⊑ δD2

, where ⊑ compares the decomposition labellings pointwise.

Observe that any map δ is the decomposition labelling of some decomposition

D if for all v,

• π(v) ⩽ Even-level (δ(v)) and

• if δ(v) = η ∈ T , then π(v) = Even-level (δ(v)).

Furthermore, any D also has a decomposition labelling δ which also satisfies the

above mentioned. The set of decompositions is in bijection with the set of decompo-

sition labellings which satisfy the above property. We highlight that decomposition

labellings are therefore a different representation of the same concept. Since the

order of a decomposition is inherited from its associated labelling, which is a lattice,

the set of decompositions forms a lattice.

Example 5. In Fig. 7.1, we give two decompositions (similar to Fig. 6.3 in the

previous chapter) to demonstrate the underlying order we have introduced among

the decompositions. For the tree with three leaves, we see that the decomposition D
in Fig. 7.1(a) is smaller than decomposition E in Fig. 7.1(b). This is because for

the two vertices of priority 2 that are unshaded the decomposition δD is pointwise

at most as large as δE . Indeed the decomposition labelling δD maps these vertices to

nodes ε11 and ε
S
11, whereas the decomposition labelling δE maps both the vertices to

the node ε21, which is strictly larger.

Maps from vertices to leafy trees that are the decomposition labellings of

attractor decompositions can be expressed using a combination of local properties

(one-step progress) and global properties (attractors). Therefore, these maps re-

semble both progress measures and attractor decompositions. We call such maps

attractor-decomposition labellings.

Proposition 7.2.1. A map δ from the set of vertices of a parity game G to

a leafy tree of T is the decomposition labelling corresponding to an (η, T )-Steven
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(a) Decomposition D (b) Decomposition E

Figure 7.1: Two decomposition where D ⊑ E

attractor decomposition A of G if and only if it satisfies the following conditions for

all vertices v

• π(v) ⩽ Even-level (δ(v));

• if δ(v) = η and η ∈ T , then π(v) = Even-level (δ(v)) and there is a one-step

strategy for Steven to visit a vertex u such that δ(u) < ηS;

• if δ(v) = x and x = η
T

or x = η
S

, then there is a reachability strategy from u

to vertices in {u ∣ δ(u) < x} that avoids any vertex from {u ∣ δ(u) > x}.

This ordering on attractor decompositions is robust as the set of all attrac-

tor decompositions is closed under taking the minimum. We show this in Proposi-

tion 7.2.2 using Proposition 7.2.1, thus showing that attractor decompositions form

a semi-lattice under the order ⊑. More importantly, for a tree T , there is a unique

minimum T -attractor decomposition of the game G.

Proposition 7.2.2. For an (n, d)-small parity game G, a tree with even level d, and

two T -attractor decompositions A1 and A2 of dominions D1 and D2, respectively,

of G, the minimum decomposition A of both is an attractor decomposition A of the

dominion D1 ∪D2 of G.

Proof. Consider D to be the decomposition obtained from the point-wise minimum

of the decomposition labelling δ1 and δ2 of A1 and A2 respectively. This ensures

that D thus defined is a minimal decomposition. All that remains is to show that it

is an attractor decomposition, which we do by inductively (inducting on the height

of the tree). We only state that for trees with height 0, the proof is routine.

We show inductively that D is an (η, T )-attractor decomposition.

Induction hypothesis. If for all v, since δ(v) = min{δ1(v), δ2(v)} ⩾ η, then D
so defined is an (η, T )-decomposition.
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We only need to show that δ satisfies the conditions mentioned in Propo-

sition 7.2.1. We list the conditions as in the proposition and show that they are

satisfied.

• π(v) ⩽ Even-level (δ(v)) and more specifically we also have if δ(v) = η for

η ∈ T , then π(v) ⩽ Even-level (δ(v)).

• Assume without loss of generality that δ1(v) = δ(v).

– v belongs to Steven, then we know that there is some neighbour u such

that δ(u) ⩽ δ1(u) < ηS .

– v belongs to Audrey, the same argument works for all of its neighbours.

• If δ(v) = x and x = η
S

or x = η
T

, then, without loss of generality, there

is a reachability strategy for Steven from u to vertices in {u ∣ δ1(u) < x}
that avoids any vertex from {u ∣ δ1(u) > x}. Observe that in the set {u ∣
δ1(u) < x} ⊆ {u ∣ δ(u) < x} and {u ∣ δ1(u) > x} ⊇ {u ∣ δ(u) > x}. So, the

same reachability strategy as that of Steven would work for the decomposition

labelling δ.

7.2.2 A discussion on Move

We describe Algorithm 8 using MoveD (R), which is defined only when the set R is

in the same part, either S
γ

or T
γ
, for some node γ of the decomposition D. The

subroutine increases the value of the decomposition by modifying it so that only the

vertices in R are rearranged. But the increase should ensure that it is still smaller

than the smallest attractor decomposition. We provide a way to implement this

operator below in the proof of Proposition 7.2.3. Here, we instead take the view of

how each decomposition corresponds to decomposition labelling and then modify it

so that it increases minimally in its valuations at R and nowhere else.

Proposition 7.2.3. The modification by the subroutine MoveD (R) of a decompo-

sition D can be implemented in nearly linear time.

Proof. We assume that the decomposition is represented by its corresponding de-

composition labelling. We first define a useful operator ⊕ for a subset of vertices R,

and a Steven decomposition D and a node η at even level p. We use as shorthand

JDηK⊕R to denote the following sequence of modifications to D

• H
η
D ← H

η
D ∪ (R ∩ π−1(p)),

• T
η
D ← H

η
D ∪ (R ∩ π−1(< p)), and
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• S
η
D ← H

η
D ∪ (R ∩ π−1(p + 1)).

We define smallMoveD (R), where we have R ⊆ T
η
D, as the following operator

• T
η
D ← T

η
D \R.

• If η has a child and let η1 be the first child, whose even level is p then JDη1K⊕R.

• If η is a leaf, then we re-assign the vertices to the side-set S
η
D ← S

η
D ∪R.

For R ⊆ S
η
D, we instead modify the decomposition as follows:

• S
η
D ← S

η
D \R.

• If η is the last child of its parent γ, then S
γ
D ← S

γ
D ∪R.

• If not, then let γ be the sibling of η and modify D by JDγK⊕R.

Since the relabelling of vertices in R requires the algorithm to only compute the

next sibling or parent, we assume such operations take at most linear time.

We state here that MoveD (R) modifies the decomposition and satisfies the

following properties:

1. it is larger than D;

2. all vertices not in R belong to the same parts as in the decomposition D;

3. all vertices in R are not in the same parts as in decomposition D;

4. it is no larger than the smallest attractor decomposition larger than D.

Note that many different decompositions can satisfy the above properties. We em-

phasise that any decomposition that satisfies the above four properties is sufficient to

prove correctness, but restrict ourselves to the one explicitly constructed in Propo-

sition 7.2.3.

We also take this opportunity to remark that one can view our algorithm as

a progress measure algorithm, however, restricted to very specific kind of ordered

trees. In fact, decomposition labellings capture exactly such measures. The striking

difference is that progress measure algorithms are generic frameworks in which one

can use any policy to decide the order in which to lift vertices, whereas ours dictates

a rigid order on the set of vertices (rather than a specific vertex) that need to

be lifted. On the other hand, we regain some flexibility, since we are allowed to

moderate by how much a vertex is lifted. This is captured by our description of a

Move subroutine that is only required to satisfy items 1-4.

111



7.2.3 Correctness and running time

We state our main theorem, to prove which we require Lemmas 7.2.4 and 7.2.7.

Theorem E. For a parity game G and a tree T , Algorithm 6 (on page 106)

takes time at most linear in the number of nodes in T and polynomial in the size

of the game G to produce the largest Steven dominion that has a Steven T -attractor

decomposition.

The correctness of our algorithm follows from Lemma 7.2.4, which, in turn,

uses Lemma 7.2.5. The latter states that each iteration of the while loop increases

the underlying decomposition. This lemma is also key to concluding our desired

runtime.

Later in Lemma 7.2.7, we argue that at most O(md) time pases before there

is a change in the underlying decomposition. Since there are only n∣T ∣ many decom-

positions, this ensures that the algorithm terminates in time O(nmd∣T ∣). Therefore,

we also get our desired running time, which is at most O(nmd∣T ∣). The rest of the

section is dedicated to the proof of Theorem E.

Lemma 7.2.4. For an (n, d)-small parity game G, a tree T and a node η whose

level is at least as large as d, procedure AAD(η,G) in Algorithm 6 returns the

smallest (η, T )-attractor decomposition of G.

Proof. To prove correctness of the algorithm and the above theorem, we prove a

stronger technical lemma from which we can obtain the theorem as a corollary. Ob-

serve that we assume that the algorithm initialises the decomposition to the smallest

decomposition. For a decomposition D, we show in Lemma 7.2.5 that one iteration

of the outermost loop modifies the decomposition in a way that this decomposi-

tion increases, whilst remaining smaller than the smallest attractor decomposition

larger than D. Since the while loop terminates only when the decomposition D is

an attractor decomposition, we can conclude from the above that the decomposition

obtained at the end is the smallest attractor decomposition larger than D. Since the

algorithm starts with the smallest D, it terminates with the smallest (η, T )-attractor

decomposition A of G.

Lemma 7.2.5. For an (n, d)-small parity game G, a tree T and a node η whose

level is at least as large as d, if D is the decomposition at the beginning of each

iteration of the procedure AAD(η,G) in Algorithm 6, then at the end of the iteration,

the decomposition maintained is always:

• strictly larger than D, and
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• smaller than A, which is the smallest attractor decomposition larger than D.

Proof. We proceed inductively on the sum of the number of nodes in the subtree of

T rooted at η and the number of vertices in G. If the number of vertices is 0, then

trivially D forms an attractor decomposition of G.

Since we use monotonicity properties to argue correctness in our proofs, it

is more natural to refer to the corresponding decomposition-labellings of the com-

puted decompositions. Let A denote the smallest decomposition larger than starting

decomposition D, and let α denote the decomposition labelling of A. The overall

structure of the proof is to argue that each modification done to the algorithm

satisfies the conditions given in the lemma.

Lines 4 and 5. The algorithm first computes the Audrey attractor to vertices in

S
η

in G. Let δ be the decomposition labelling of such a decomposition. If there is

no intersection between [Dη] and U , then note that [Dη] forms a trap. If not, and

there is an intersection, we show that for all vertices u ∈ U \ Sη in the intersection,

α(u) ⩾ ηS in Proposition 7.2.6.

Modification done by Line 8. The attractor T to the set of highest priority

vertices in [Dη] is computed. The set of vertices R = T
η
D \ T is first identified,

and the operation MoveR (D) is performed. If T
η
D = T , then no change is made

to the decomposition D as R = ∅. If not, recall that as defined earlier, Move

modifies D to a decomposition E that is larger than D, all the vertices not in R are

left undisturbed, and all the vertices in R are reallocated to a different partition

such that the decomposition obtained is larger. Since for all v ∈ R, we must have

α(v) > η
T

due to no Steven strategies to reach T
η
D = {w ∣ δ(w) < η

S} without

visiting any vertices in {w ∣ δ(w) > ηS}.

The For loop. For each child ηi of η, we know from inductive hypothesis that

ADD(ηi, T , [Dηi]) ensures that the decomposition after the procedure is an (ηi, T )-
attractor decomposition when restricted to the set of vertices in [Dηi]. Additionally,

we know that the decomposition does not increase more than the attractor decom-

position for the subgame [Dη], and therefore for the whole game.

Modification done by Line 14. Finally, the attractor S to the set [Dη] is

computed. The set of vertices R
′
= S

η
D \ S is identified. Since there is no Steven

attractor strategy from the set of vertices currently assigned by δ to η
S

, for all
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v ∈ R
′
, we must have α(v) > ηS . Note that this is exactly the operation MoveR′ (D)

performs.

Proposition 7.2.6. For an (η, T )-decomposition D of a parity game G, if Audrey

has a strategy to visit S
η
D from all vertices U ⊆ [Dη], then for any (η, T )-attractor

decomposition A that is larger than D, then U does not intersect with [Aη]

Proof. Since A is an (η, T )-attractor decomposition of G by definition [Aη] forms

a trap in G.

We show our proposition by induction on the smallest number of steps in

which Audrey can force the visit to S
η
. It is true that all vertices u in G with a

zero-step reachability strategy to S
η

have u ∉ [Aη]. It is trivial that u ∉ [Dη], and

since A is larger than D, it follows.

We show that if all vertices u where Audrey has an at-most i-step reachability

strategy to visit S
η

are such that u ∉ [Aη], then so do all vertices v where Audrey

has an i + 1-step reachability strategy have u ∉ [Aη].
Consider vertices with an i+ 1-step Audrey strategy to visit S

η
. For all such

u ∈ U with an i + 1-step strategy, Audrey can ensure a visit to a vertex v with an

at most i-step Audrey strategy to S
η
. For such v, we know v ∉ [Aη] by induction.

If Audrey can visit v from u, since v ∉ [Aη], the subgame formed by [Aη]
would not be a trap, and hence u ∉ [Aη].

Lemma 7.2.7. For an (n, d)-small parity game G, a tree T and a node η in T
whose level is at least as large as d, the procedure AAD(η,G) in Algorithm 6 takes

at most O(md) time before modifying the decomposition.

Proof. If the current decomposition during a call of the procedure with node η is

already an (η, T )-attractor decomposition, then this subcall takes at most time

O(md) time to check if our decomposition is an attractor decomposition. The crux

of our argument boils down to showing that we spend at most O(md) time before

modifying the decomposition D such that it increases.

We call a recursive subcall AAD(η,G) trivial if it is made to an empty subset

of vertices. We assume that there are no trivial subcalls made by the algorithm. This

can be assumed if the decomposition is maintained as a labelling by the algorithm.

In fact, we store for each vertex of the game an element of the leafy tree of T .

The algorithm, instead of iterating through all the children of the tree, only makes

a recursive call at a node η when there is some vertex all which has a labelling

corresponding to a descendant of η.
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We address two things; in a non-trivial subcall, the amount of work done

outside this recursive call is at most O(md), and secondly, at most O(md) time

passes before some modification is made to the underlying decomposition.

The fact that the algorithm outside of the recursive calls takes time O(md)
is because the algorithm either computes an attractor to a set, performs basic set

operations, or calls the Move subroutine. Computing attractors itself takes time

at most O(m), but since we store decompositions as labellings, accessing a subset

of vertices takes time O(md), and so does performing the Move subroutine, thus

contributing to the runtime claimed above.

Now, we show that not too much time is spent between two modifications

to the decomposition. If, at the beginning of the procedure, the decomposition D is

not already an attractor decomposition, then we know that one of the following is

true.

• if δ(v) = γ and there is a no one-step strategy for Steven to visit a vertex u

such that δ(u) < γS or

• if δ(v) = x where x = γ
T

or γ
S

, then there is an Audrey reachability strategy

from u to {v ∣ δ(v) > x}.

Let v be the smallest vertex with such a δ. We argue that we make at most nd

many (non-trivial) recursive subcalls in a row, taking a total time of O(md) before

modifying the decomposition D that results in changing the value of the decompo-

sition labelling of v. This is true, since for some γ, a descendant of η, δ(v) = γ ∈ T
or δ(v) = γT or δ(v) = γS . No modification of the decomposition is made until the

recursive call is made at node γ due to the minimality of v. This ensures that all re-

cursive calls made at node γ
′
that are not to an ancestor of γ terminate ‘quickly’, due

to all the vertices already forming a (γ ′, T )-attractor decomposition. The total time

taken is bounded by O(md), as each non-trivial recursive subcall made corresponds

to a disjoint set of vertices that already form an attractor decomposition. The sum

of the time taken to check that the decomposition, when restricted to these vertices,

actually forms an attractor decomposition is bounded above by O(md).

7.3 Discussion

Our algorithm runs in time that is linear in the size of the input tree. Hence,

this algorithm performs better asymptotically when the input parity games have

attractor decompositions whose tree has size that is comparable to the number

of vertices in the parity game. Two such scenarios can be imagined where the
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tree of attractor decomposition is significantly smaller than the Jurdziński-Lazić

universal trees required to solve the game. If the parity game has a small (or large)

Strahler number, we have demonstrated in Chapter 5 that the trees required to solve

them are polynomial in the size of the game. Another promising case is where the

attractor decomposition tree is small because most vertices are in the attractor sets

corresponding to the attractor decomposition. In such cases, although the number

of vertices in the underlying game is large, the trees required to solve them might

be much smaller.

If we are to solve arbitrarily large parity games, we suffer from several pitfalls

of progress measure algorithms. If the game is winning for Audrey from everywhere

and we run our algorithm, which computes the attractor decomposition for Steven,

then our algorithm exhaustively rules out all Steven decompositions before conclud-

ing that the game is losing for Steven. Such instances, which exhibit the worst-case

complexity are caused by the lack of a symmetric treatment of the players in the

algorithm. In the next chapter, we produce an algorithm that is recursive and

attractor-based and also ensures a symmetric treatment of the players. We rely

heavily on the techniques developed in this chapter to develop our new algorithm.

Our symmetric algorithms follow the same tree of recursive calls as several preexist-

ing symmetric attractor based algorithms, but with a square root of their worst-case

complexity. Consequently, our algorithm can be seen as an enhancement to these

algorithms, which ultimately leads to an improvement in their runtimes.
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Chapter 8

Symmetric attractor-based

algorithm

Among the first algorithms to solve parity games were symmetric attractor-based

algorithms. Based on the algorithm of McNaughton [McN93] to solve Muller games,

Zielonka [Zie98] proposed an algorithm to solve parity games in his influential work.

The runtime complexity of the McNaughton-Zielonka algorithm was O(nd), for an

(n, d)-small parity game. Although there are currently several algorithms that boast

a better worst-case runtime complexity, this algorithm remains among the fastest

in practice [FL09, LPSW22, FJdK
+

19].

We propose a new algorithm that is a symmetric attractor-based algorithm

for solving parity games. Ours can be seen as a technique to enhance other symmet-

ric attractor-based algorithms, to bring their theoretical complexities close to the

state of the art. We focus on illustrating this technique using the example of the clas-

sic McNaughton-Zielonka algorithm [Zie98] and we also argue that it is applicable

to other symmetric attractor-based algorithms that were inspired by McNaughton-

Zielonka [BDM18, Par19, LPSW22, JMT22, LBD20]. McNaughton-Zielonka and its

variants have exhibited excellent performance in practice, significantly beating other

classes of algorithms on standard benchmarks [Kei15, vD18, BDM18, BDM
+

21]. On

the other hand, their worst-case asymptotic running time is typically worse than that

of asymmetric algorithms [Jur00, CJK
+

22, JL17, DJT20]. More specifically, while

the running time of state-of-the-art asymmetric algorithms is dominated by the size

of an underlying universal tree [JL17, DJT20], it is the square of the size of a uni-

versal tree for symmetric algorithms [JMT22, LPSW22]. We reduce the worst-case

running time of symmetric attractor-based algorithms to match the linear depen-

dence on the size of a universal tree enjoyed by asymmetric algorithms.
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Our algorithm is based on making better use of the structural information

obtained from earlier recursive calls. This significantly reduces the worst-case over-

all size of the tree of recursive calls of the algorithm. While existing symmetric

attractor-based algorithms are typically computing just the winning sets or posi-

tional winning strategies, we propose to enhance them to explicitly record decom-

positions, which are finely structured witnesses of winning strategies introduced in

the previous chapters. Moreover, we show how decompositions for both players ob-

tained from recursive calls on subgames can be meaningfully used to reduce the sizes

of subgames on which further recursive calls are made, even if their key properties

are damaged by the removal of some vertices from subgames on which they were

computed. In contrast, other symmetric attractor-based algorithms are wasteful by

routinely discarding witnesses for one of the players that are computed in recur-

sive calls; in the worst case, this results in repeatedly solving large subgames from

scratch.

Our technique is robust and applies to both the classic exponential-time

McNaughton-Zielonka algorithm [Zie98] and its more recent quasi-polynomial vari-

ants [Par19, JMT22, LPSW22]. We are also confident that it is applicable to other

symmetric attractor-based algorithms, such as priority promotion [BDM18], which

are variants of the McNaughton-Zielonka algorithm. Such algorithms can be in-

terpreted as the enhancements by ad hoc heuristics to be robust to the wasteful

behaviour described above. Ours is a more principled approach, in which decompo-

sitions of subgames computed in previous recursive calls are never discarded and are

instead used in a systematic manner to speed up and reduce the number of further

recursive calls.

8.1 An exponential-time symmetric algorithm

Although McNaughton-Zielonka algorithm outperforms several other algorithms in

practice, there are several families of games on which it takes exponential time.

Some examples are those found in the paper of Friedmann [Fri11], Gazda and

Willemse [GW13], van Dijk [vD18], Benerecetti et al [BDM20]. We add to this

list a family of games on which McNaughton-Zielonka makes exponentially many

recursive calls. We focus our attention in this section to this family and use it as a

running example to highlight the exponential complexity of McNaughton-Zielonka,

to motivate the idea behind our technique, and to show how our technique leads to

significant improvement.

We recall the classic recursive algorithm of McNaughton and Zielonka [McN93,
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Zie98]. However, this is not similar to a description of the McNaughton-Zielonka

algorithm that one would find in the wild. It is enhanced to produce attractor de-

compositions for both of the players and to return the winning sets for Steven and

Audrey. The work of Jurdziński and Morvan [JM20, JMT22] also contains such an

enhanced version of the McNaughton-Zielonka algorithm that produces attractor

decompositions. We reproduce it with modifications in Algorithm 7 to align with

the current definition of attractor decompositions.

The algorithm, on an (n, h)-small parity game G, uses two complete n-ary

trees of even level and odd level h and h+ 1, which dictates its recursive calls. The

algorithm uses two mutually recursive calls McNZ-Even and McNZ-Odd, which

takes as input a game G, the highest priority h, and two nodes ε and ω from the two

complete trees T Odd
and T Even

. The node ε belongs to Steven’s n-ary tree T Even

and the node ω to Audrey’s n-ary tree T Odd
. The respective levels of these nodes ε

and ω in the tree are h and h + 1.

The trees T Even
and T Odd

are used to construct the (ε, T Even)-attractor

decomposition for Steven and (ω, T Odd)-attractor decomposition for Audrey. We

assume that the algorithm stores the attractor decompositions DEven and DOdd

computed in previous recursive calls. As in the previous chapter, these attractor

decompositions are stored as a partition of the set of vertices, accessed using the

nodes of the complete trees. These disjoint parts are referred to as H
ε
Even, T

ε
Even and

S
ε
Even for each node ε in the n-ary Steven’s tree T Even

and H
ω
Odd, T

ω
Odd, and S

ω
Odd,

for ω in Audrey’s tree T Odd
. We exclusively use ε and its variants for Steven’s trees

and ω and its variants for Audrey’s trees to avoid confusion. In this section, the

tree is also assumed to be N-labelled, and we write ⟨x1, . . . , x`⟩ ⊙ y for the tuple

⟨x1, . . . , x`, y⟩ obtained by concatenating ⟨x1, . . . , x`⟩ with ⟨y⟩. Recall that if a tree

is assumed to have a natural labelling (labelled using N\{0}), we then represent the

i
th

child of a node η by η ⊙ i.

We start by describing the McNaughton-Zielonka algorithm modified to pro-

duce an (ε, T Even)-attractor decomposition for Steven and an (ω, T Odd)-attractor

decomposition for Audrey. The algorithm runs iteratively until an attractor decom-

position is found. In iteration i, the Steven attractor Ti to the set of vertices of

highest even priority Hi is found, and removed from the current game Gi. Then,

Audrey’s version of the procedure is called on the subgame G ′i, obtained from Gi
after the removal of Ti. Once the corresponding winning set U

′
i of Audrey in G ′i

is computed, the (ω ⊙ i, T Odd)-decomposition for Audrey is found except for the

side-attractor set S
ω
Odd. To identify this set, Audrey’s attractor S

′
i to this Audrey-

winning dominion U
′
i is computed and the statement S

ω⊙i
Odd ← A

′
i \ U ′i in line 13
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declares the side attractor set for Audrey. The next subgame Gi+1 is obtained by

removing S
′
i from Gi.

The above process is repeated until the Audrey’s attractor Si to her winning

set Ui does not contain any vertices other than Ui. If this is the case, we know that

Steven can win from all vertices of Gi+1 computed, and the statements H
ε
Even ← Hi

and T
ε
Even ← Ti \Hi fix the highest priority set and top attractor set, respectively,

in lines 16 and 17. In the Steven recursive call, we only identify the partitions

H
ε
Even, T

ε
Even for Steven along with the parts S

ω⊙i
Odd for Audrey. The other parts of

the partition are filled out by recursive calls of the procedure. We only describe the

Algorithm 7 McNaughton and Zielonka enhanced to produce attractor decompo-
sitions of both players

Input: A parity games G with highest priority h and nodes ε in the even tree T Even

whose even level is h and ω in the odd tree T Odd
whose odd level is h + 1.

Output: The set of winning vertices for Steven.
1: procedure McNZ-Even(G, h, ω, ε)
2: if G = ∅ then
3: return ∅
4: end if
5: G1 ← G; i = 0
6: repeat
7: i← i + 1
8: Hi ← π

−1(h) ∩ Gi
9: Ti ← Steven attractor to Hi in Gi

10: G ′i ← (Gi \ Ti)
11: U

′
i ←McNZ-Odd(G ′i, h − 1, ε, ω ⊙ i)

12: S
′
i ← Audrey attractor to U

′
i in Gi

13: S
ω⊙i
Odd ← S

′
i \ U ′i

14: Gi+1 ← Gi \ S ′i
15: until S

ω⊙i
Odd = ∅

16: H
ε
Even ← Hi

17: T
ε
Even ← Ti \Hi

18: return V (Gi+1)
19: end procedure

recursive calls at the even levels as the other recursive for odd levels can be described

similarly. The correctness of the above algorithm is well known, and we refer an

interested reader to several preexisting works [Zie98, JPZ08, JMT22] proving it.

In the upcoming discourse, we produce an example family of games for

which McNaughton-Zielonka’s algorithm exhibits exponential time complexity (Sec-

tion 8.1.1). Subsequently, we introduce our enhancement in Algorithm 8, which

has a worst-case running time is the square root of the worst-case running time of
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McNaughton-Zielonka algorithm (Section 8.1.2). By proving polynomial-time termi-

nation (Section 8.1.3) of our algorithms for these specific game families, we claim a

significant advantage over the McNaughton-Zielonka approach, which, when applied

to these identical game sets, exhibits exponential time complexity.

8.1.1 An exponential family of games for McNaughton-Zielonka

Consider the following family of games Hk for each k. The game Hk contains of 5k

vertices, with the highest priority as k + 2. For all i ⩽ k, the vertex set contains 5

vertices and they are {ui, vi, wi, xi, yi}. We call this set Li and refer to it as the i
th

layer of the game. The priority of wi is i+2 and all the other nodes in Li have priority

i+1. For even values of i, Audrey owns vi, yi and Steven owns ui, xi. For odd values

of i, this is swapped. The vertex wi is owned by Steven for all i. The edges within

a layer Li are: {(ui, vi), (vi, ui), (vi, xi), (xi, wi), (wi, vi), (xi, yi), (yi, xi)}. Between

layers,

• for each i ⩽ k − 2, there is an edge (ui, yi+2);

• for each 1 < i ⩽ k, there are edges (vi, vi−1) and (yi, yi−1).

An example of the game H4 is shown in Figure 8.1, where the square vertices are

owned by Steven and the pentagon ones by Audrey. The odd layers in the game

are winning for Steven, whereas the even layers are winning for Audrey. A strategy

for each player is to move to the vertex to the left. More formally, for each player,

including all their edges (vj , uj) and (yj , xj) (along with all the edges of the opponent

player) turns out to be a winning strategy in their respective dominions.

Figure 8.1: The game H4

Lemma 8.1.1. For the family of games Hn for n ⩾ 1 Algorithm 7 makes Θ(2n)
recursive calls.
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We first highlight the idea behind the exponential complexity of McNaughton-

Zielonka. For an odd value k, the procedure McNZ-Even on Hk makes two McNZ-

Odd calls and these are made on the subgames Hk−1∪{uk, vk, yk} and Hk−1∪{xk, yk}
in succession. Notice that these games have a large intersection, which includes the

subgame Hk−1 and the vertex yk, leading to an exponential complexity of this easy-

to-describe algorithm. The first recursive call Hk−1 ∪ {uk, vk, yk} indeed identifies

the winning sets for this subgame for both players. Moreover, for Steven, the strate-

gies that are winning in this subgame are in fact winning in Hk too. Unfortunately,

the next recursive call promptly discards this information.

Proof of Lemma 8.1.1. Without loss of generality, we assume that n is even. The

same claims hold for odd n. Consider the important families of subgames that we

see in our recursive calls:

• Bn = Hn−1 ∪ {un, vn} = Hn \ {wn, xn, yn}

• Cn = Hn−1 ∪ {un, vn, xn} = Hn \ {wn, xn}

We will argue that each of these families take exponential time to solve due to the

structure of the game.

Proposition 8.1.2. The number of recursive calls needed to solve Cn is the number

of recursive calls needed to solve Bn. Moreover, the number of recursive calls to

solve either subgame using Algorithm 7 is 2
n

.

Proof. We prove the above proposition by proving the following claim. If we denote

the number of recursive calls to solve Cn and Bn with C(n) and B(n) respectively,

then we also have the following simultaneous recurrence relation C(n) = B(n) =
C(n − 1) +B(n − 1) of the claim.

Claim 1. McNZ-Even on the subgame Bn as well as Cn makes two recursive calls

of McNZ-Odd on Bn−1 and then Cn−1.

The top priority in both games is n+ 1. The Steven attractor to the vertices

of priority n + 1 is

• {un, vn, yn, wn−1, xn−1} in Cn and

• {xn, yn, wn−1, xn−1} in Bn

The complement of the Audrey attractor to n + 1 in both these games is exactly

Cn−1 and their first recursive call for both the games are the same.
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This recursive call returns only {un−1, vn−1} as the winning sets for Steven

in Cn−1. The Steven attractor to {un−1, vn−1} is {un−1, vn−1, wn−1} in both Cn and

Bn.

The complement of this Steven attractor set is

• Bn−1 ∪ {un, vn, yn} in Cn and

• Bn−1 ∪ {xn, yn} in Bn

The top priorities in the above subgames are

• {un, vn, yn, wn−1} in Cn, with Audrey’s attractor being {un, vn, yn, wn−1, xn−1}
and

• {xn, yn, wn−1} in Bn, with Audrey’s attractor being {xn, yn, wn−1, xn−1}.

Their complements in the respective games is Bn−1.

We only need to make the following statement to conclude our proof.

Claim 2. McNZ-Even on the subgame Hn makes two recursive calls of McNZ-

Odd to the subgames Cn−1 and Bn−1.

In fact, the complement of the Steven attractor to the top priority of Hn is

the set Cn, which is the first recursive call. The Audrey winning set in Cn is exactly

the set {un, vn}. The Audrey attractor to this two-element set in the entire game is

{un, vn, wn}. Now we are left with the subgame Bn, thus proving our claim.

8.1.2 McNaughton-Zielonka algorithm with memory

McNaughton-Zielonka’s wasteful behaviour in the example family of games above

prompts us to ask if there is some way we can utilise the progress we make in the first

recursive call of these symmetric algorithms to provide a head-start for the following

recursive calls. Several enhancements of McNaughton-Zielonka exist, all of which

attempt to utilise information from recursive calls. Some notable ones include the

priority promotion algorithms and its variants [BDM18, BDM
+

21] along with the

Tangle learning algorithm by van Dijk [vD18], which all perform well in practice.

The key idea behind these algorithms was to identify quasi-dominions (which are

subgames where a player wins from all vertices if the play stays within this sub-

game) in their recursive calls and to increase these quasi-dominions obtained so far

carefully. Another approach was to remember the strategy obtained in the recursive

call. A recent work by Lapauw, Bruynooghe, and Denecker [LBD20] shows that

by remembering and modifying the strategies obtained recursively in a calculated
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manner, faster practical performances can be obtained for several benchmarks. But

all of these have worst-case exponential running time comparable to McNaughton-

Zielonka, as these heuristics do not lead to a provable increase in the worst-case

running time.

We show that our idea of enhancing an algorithm with decompositions can

be adapted to work for recursive, symmetric, attractor-based algorithms. This

turns out to reduce the worst-case runtime complexity to a square-root of the

McNaughton-Zielonka algorithm. We make use of structural information obtained

from recursive calls to significantly reduce the worst-case overall size of the tree of

recursive calls of the algorithm as compared to other symmetric attractor-based ap-

proaches. We show how witnesses for both players from recursive calls on subgames

can be meaningfully used to reduce the sizes of subgames on which further recursive

calls are made, even if their key properties are damaged by the removal of some

vertices from subgames on which they were computed. In contrast, other symmetric

attractor-based algorithms are wasteful by routinely discarding witnesses for one of

the players that are computed in recursive calls; in the worst case, this results in

repeatedly solving large subgames from scratch.

The procedure McNZFast-Even in Algorithm 8 works using decomposi-

tions Dε
Even and Dω

Odd on a subgame G. Both Audrey’s and Steven’s decompositions

are being maintained, and they both need to be modified based on the attractors

computed. To distinguish between the modification of each of these decomposi-

tions, we highlight the changes made to the Steven decomposition in blue and the

changes made to the Audrey decomposition in pink. We also observe that the high-

lighted part indicates exactly how our enhancement deviates from the attractor-

decomposition producing version of McNaughton-Zielonka (Algorithm 7). Indeed,

removing the highlighted parts gives us the McNaughton-Zielonka algorithm.

We assume that the algorithm takes as input an (n, h)-small parity game G,

the priority h, the nodes ε in tree T Even
with even level h, and the node ω in tree

T Odd
with odd level h+ 1. If for one of the players, the decomposition computed so

far already forms an attractor decomposition, then the algorithm stops and returns

the corresponding set, since having an attractor decomposition implies that we have

a witness of winning for that player in the current subgame. On the other hand, if

both players only have decompositions that are not attractor decompositions of the

current subset of vertices, our algorithm computes the Steven attractor to the top

priority in the subgame Gi, closely mirroring the McNaughton-Zielonka algorithm

(Algorithm 7). However, our procedure deviates from McNaughton-Zielonka here

by modifying the part T
ε
Even of the Steven decomposition to update this information.
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Algorithm 8 McNaughton and Zielonka Algorithm with memory

Input: A parity games G with highest priority h and nodes ε in the even tree T Even

whose even level is h and ω in the odd tree T Odd
whose odd level is h + 1.

Output: The set of winning vertices for Steven.
1: procedure McNZFast-Even(G, h, ε, ω)
2: if Dε

Even restricted to G is an attractor decomposition then
3: Set (SωOdd, V (G))
4: return V (G)
5: else if Dω

Odd restricted to G is an attractor decomposition then
6: Set (SεEven, V (G))
7: return ∅
8: else
9: G1 ← G; i = 0

10: repeat
11: i← i + 1
12: Hi ← π

−1(h) ∩ Gi
13: Ti ←Steven attractor to Hi in Gi
14: Ri ← T

ε
Even \ (Ti ∪Hi)

15: MoveDEven
(Ri)

16: Si ← Ti ∩ [Dω⊙i
Odd]

17: Set (Sω⊙iOdd, Si)
18: G ′i ← (Gi ∩ [Dω⊙i

Odd])
19: U

′
i ← McNZFast-Odd(G ′i, h − 1, ε, ω ⊙ i)

20: S
′
i ← Audrey attractor to U

′
i in Gi.

21: R
′
i ← S

ω⊙i
Odd \ S ′i

22: MoveDOdd
(R′i)

23: Qi ← S
′
i ∩ [Dε

Even]
24: Set (SεEven, Qi)
25: Gi+1 ← Gi \ S ′i
26: until Dε

Even restricted to Gi+1 is an attractor decomposition
27: return V (Gi)
28: end if
29: end procedure
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This is done in the lines 14 and 15, where the set Ri is first identified as the set of

vertices that are no longer in the attractor to the top priority and later the subroutine

MoveDEven
(Ri) is called on such an Ri. This subroutine modifies the decomposition

DEven such that the vertices in Ri are assigned to parts in the decomposition labelled

by values larger than ε. The Move subroutine was defined in detail in the previous

chapter.

The lines highlighted in blue result in the current Steven decomposition being

modified in such a way that the top-set T
ε
Even now contains exactly the vertices

Ti \ Hi, from which Steven has a reachability strategy to the set of vertices of

highest priority Hi in the subgame Gi.
Next, the lines highlighted in pink result in the modification of Audrey’s

decomposition. The algorithm first computes the vertices Si that are in the inter-

section of Ti (the Steven attractor to Hi) and [Dω⊙i
Odd]. Steven has a strategy to

escape from Si in the subgame [Dω⊙i
Odd] using the attractor strategy in Ti and visit

an even vertex of priority h. To ensure that [Dω⊙i
Odd] is a trap for Steven, using the

subroutine Set, the vertices in Si are removed from the parts of the decomposition

that are contained in [Dω⊙i
Odd] and later reassigned to the parts containing vertices

in Si in Audrey’s decomposition. The vertices in Si are now reassigned instead to

the part S
ω⊙i
Odd. This subroutine Set is more nuanced, but for the moment, it is best

thought of as being reassigned to the part represented by S
ω⊙i
Odd. We provide a more

technical overview later on for S
ω⊙i
Odd.

In the original McNaughton-Zielonka algorithm, the next recursive call works

on the complement of the Steven attractor set Ti. The complement of a Steven

attractor set forms a trap for him. However, in the next recursive call at one level

lower, our algorithm considers the subgame G ′i of Gi induced by [Dω⊙i
Odd]. We then

perform an odd-level recursive call by calling the procedure McNZFast-Odd on

G ′i, which is a trap for Steven. After Audrey’s recursive call returns her winning set

U
′
i in the subgame G ′i, the algorithm computes the Audrey attractor S

′
i to the set

U
′
i. Since this attractor S

′
i is the set of vertices from which Audrey has a strategy

to reach U
′
i, we adjust Audrey’s decomposition by calling the subroutine Move on

vertices R
′
i that are in S

ω⊙i
Odd but not in S

′
i. This is captured in line 22 which calls

the subroutine Move on R
′
i, but this time for Audrey’s decomposition. Finally, the

procedure computes the set of vertices Qi in both the set S
′
i and the set [Dε

Even].
The subroutine Set is called which relocates Qi to the part S

ε
Even.

We initialise these decompositions, similar to our asymmetric algorithm, with

the smallest decomposition for both players.

Remark 5. The subroutine Set (SηD, S) takes as input a part from a decomposition
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D. Intuitively, the subroutine modifies it in such a way that all vertices in S are

now assigned to the part S
η
D. It can be performed by the following operations:

• [Dη]← [Dη]⊖ S

• S
η
D ← S

η
D ∪ S

Recall that the operator ⊖ was defined in the previous chapter in page 106. The time

taken by such operations is near-linear time.

However, we remark that any subroutine that modifies the decomposition to

a decomposition D′
that it is

1. at least as large as the original decomposition D,

2. at least as large as the decomposition E which has S
η
E = S and all other parts

in the partition E to empty, and

3. at most as large as the smallest attractor decomposition larger than D

serves our purposes in terms of proving correctness.

Correctness and Runtime. Any function Move as defined in the previous chap-

ter and Set as in Remark 5 provide the required correctness and runtime that we

claim in the theorem below. We only state the following theorem, which guarantees

correctness and a quadratic improvement in the runtime, but prove it towards the

end of the chapter.

Theorem 8.1.3. Let G be a (n, h)-parity game and let ε and ω be nodes that have

even level and odd level h and h+1 in the two N-labelled n-ary trees T Even
and T Odd

respectively. Procedure McNZFast-Even(G, h, ε, ω), initialised with the smallest

T Even
-decomposition of G for Steven and the smallest T Odd

-decomposition of G for

Audrey, terminates with the smallest Steven T Even
-attractor decomposition for the

Steven dominion and the smallest Audrey T Odd
-attractor decomposition for the Au-

drey dominon in G.

The following lemma highlights the improved runtime of our algorithm by a

quadratic improvement we gain compared to McNaughton-Zielonka, and comparable

to the small progress measure algorithm by Jurdziński [Jur00].

Lemma 8.1.4. For a (n, h)-small parity game G, the number of recursive calls by

either McNZFast-Even or McNZFast-Odd is at most the product of a polyno-

mial in n and O(n
h
)⌈h/2⌉.

127



Figure 8.2: The game F4

8.1.3 Analysis on example families of games

We will demonstrate the algorithm on two examples in this subsection to understand

the efficiency of our algorithm. These two examples are going to be the family of

games Hk introduced in Section 8.1 and the family of games, we will call Fk, which

was introduced by Friedmann [Fri11].

We recall that in his work, Friedmann provided a family of games on which

McNaughton-Zielonka takes exponential time [Fri11]. We will call this family of

examples Fk for k ∈ N.

We will again describe this game Fn in ‘layers’ as done for the previous hard

example. The game Fn consists of n + 1 layers L0, , L1, . . . , Ln, each consisting of

at most 5 vertices.

• L0 consists of 3 vertices a0, b0 and c0.

• For i ∈ {1, . . . , n − 1}, we define Li to be {ai, bi, ci, di, ei}.

• Finally, Ln = {dn, en}.

The priorities of the vertices ai, bi, and ci are 3i + 3, 3i + 4, and 3i + 5 re-

spectively. The priorities of di and ei are both 2 if i is odd and 1 if i is even.

The ownership in a layer alternates. Vertices ai, ci and ei are owned by Audrey

when i is even and owned by Steven otherwise. The vertices bi and di are owned

by Audrey when i is odd and by Steven otherwise. The edges within a layer

are (ai, bi), (bi, ai), (ci, bi), (di, ci), (di, ei), and (ei, di). Between the layers, we de-

fine the following edges (bi, bi+1), (bi+1, bi), (ai, di+1), (ei+1, bi), and (ci, di+1), for

i ∈ {0, . . . , n − 1}. These edges however are defined only when both the incoming

and outgoing vertices corresponding to it exist. The game Fn is won by Audrey for

even values of n and is won by Steven otherwise. We have drawn F4 in Figure 8.2,
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and this game is won by Audrey. The winning strategy for the player that wins the

game is to either ‘go left’ or ‘go up’.

The exponential behaviour is due to the careless disposal of information

obtained in recursive calls. In the next two lemmas, we show that our algorithm

solves Friedmann games as well as our family of games Hk in polynomial time.

Lemma 8.1.5. Algorithm 8, when initialised with the trivial decomposition for both

players, solves the family of games Hn in time that is polynomial in n.

Lemma 8.1.6. Algorithm 8, when initialised with the trivial decomposition for both

players, solves the Friedmann family of games Fn [Fri11] in time that is polynomial

in n.

The key idea behind both of these proofs is that the algorithm records a

sufficient amount of progress by maintaining a decomposition in its preliminary

recursive calls. In future recursive calls, when this decomposition is our starting

point, the algorithm does at most polynomial amount of processing in the above

family of games. This phenomenon is highlighted in the scenarios listed below.

1. Steven or Audrey already has a winning strategy in the form of an attractor

decomposition from a previous recursive call (as in the proof of Lemma 8.1.5

as well as Lemma 8.1.6).

2. Audrey’s decomposition is robust enough to conclude quickly that the game

is losing for Audrey, and therefore winning for Steven (as in the proofs of

Lemma 8.1.5 and Lemma 8.1.6).

3. Subsequent recursive calls are made on significantly smaller subgames due to

the structure of the available decompositions. Some of these recursive calls

might even turn out to be empty (as in the proof of Lemma 8.1.5).

The exact details of these proof requires us to identify specific subgames that the

recursive calls are made on and the details of the proof are available below. Our

proofs, which show that these family of games are solvable in polynomial time, rely

on induction. Thus, in turn, hinges on the regularity of the subgames in recursive

calls.

While these proofs are tailored to exploit the regular structures within the

subgames and establish the polynomial termination of these games, it is essential to

note that our algorithm’s strength transcends being a mere tailored technique reliant

on game-specific properties. We underscore this by showing that our algorithm’s
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efficiency is not confined to a specialized context; indeed, it operates with a worst-

case time complexity that is a square root of that of the McNaughton-Zielonka

algorithm.

Fast termination of Algorithm 8 on games Hn and Fn

For the proofs, we drop the subscripts Even and Odd from decompositions and

their respective sets to simplify notation. The decompositions will be identified by

their node in the tree, ε denoting nodes in the Steven tree and ω denoting nodes in

Audrey’s tree.

Proof of fast termination of Algorithm 8 on the family of games Hn We

prove this by showing that the decomposition maintained after one recursive call

ensures polynomial termination of the other recursive call.

Proof (sketch) of Lemma 8.1.5. Recall the families of subgames from the proof of

Lemma 8.1.1, showing exponential runtime of the games defined where for all k, we

define Ck = Hk \ {wk, xk}.

We will find the number of recursive calls to solve Ck+1 in this proof instead.

This suffices because the complement of the attractor to the top priority in Ck+1 as

well as Hk, remain the same for these two games on running the two algorithms.

If T (k) denotes the time taken to solve Ck+1, then we show that T satisfies

the recurrence relation for a fixed constant c

T (k + 1) ⩽ T (k) + c ⋅ kc.

From the above recurrence, we can show that T (k+ 1) is bounded by a polynomial.

Now all that remains is to show that the algorithm on Ck+1 in fact produces the

above recurrence. Without loss of generality, assume k is even.

First iteration. The vertices of priority k + 2 in Ck+1 are exactly the ver-

tices in the set {uk+1, vk+1, yk+1, wk}. The algorithm computes the Steven attractor

to this set of vertices as it is the set of vertices that have the highest even priority.

The Steven attractor to it consists of the above set along with vertex xk. These

vertices are added to H
ε

and T
ε

respectively, where ε is the root of the Steven tree.

The complement of these vertices is exactly Ck. A recursive call is then made to

the rest of the game Ck with decompositions that are the smallest decompositions

(with respect to the order introduced on the decompositions by the decomposition

labellings, as defined in Chapter 7) for both players, from where we get the first
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Figure 8.3: The game H4 recalled

term of our recurrence relation. The recursive sub call returns the attractor decom-

positions of Ck.
Note that the subgame consisting exactly of the vertices {uk, vk} is winning

for Audrey in Ck, while the rest are winning for Steven. Therefore, there is an

attractor decomposition of the game Ck \ {uk, vk} = Hk−1 ∪ {yk}. This game is

winning for Steven and therefore has an attractor decomposition for Steven. The

strategy for Steven is to use the same edges from the odd layers, which was winning

for Steven in Hk. For even layers, Steven’s strategy in this subgame would be to

use the edges (ui, yi+1) and (xi, wi) for even values of i.

We show that the algorithm returns the smallest attractor decomposition of

the subgame Hk−1 ∪ {yk}. We will now define the attractor decomposition of the

subgame Hk−1 ∪ {yk}, which will be returned by our first recursive call.

To avoid cumbersome notation to define our attractor decomposition for the

subgame Hk−1 ∪ {yk}, we define the attractor decomposition of Hn−1 ∪ {yn} for

any even n, and denote it using Aε
n. The tree with respect to which the attractor

decomposition Aε
n and Aω

is defined is not a complete tree; however, we remark

that this tree can be embedded into the complete tree, and therefore we can extend

the decomposition into one with respect to a complete tree. We will show how this

decomposition can be obtained in a step-by-step manner.

The attractor decomposition Aω
n is defined as

⟨∅,∅, (D′
n−2, ⟨∅,∅, (Rn−1) ,∅⟩) ,∅⟩

where D′
n−2 is an (ω1, T )-decomposition and Rn−1 is an (ω21, T )-decomposition.

We define these decompositions inductively as follows. The (ω1, T )-decomposition

D′
n−2 is the same as another decomposition Dn but with its side-set defined as
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S
ω1

A ≔ {yn+1, un+1}. We pictorially represent Aω
n for better readability.

D′
n−2

Rn−1

We now define the attractor decompositions Dn−2 and Rn−1 recursively. We define

Dn and Rn−1 inductively as drawn below. We say Dn is the decomposition

⟨∅,∅, (⟨{un, vn} ,∅,∅⟩ , ⟨{xn, yn} ,∅, (Dn−2) ,∅⟩)⟩ .

For improved readability, we draw the decomposition as follows.

Dn−2

We define Rn−1 as

⟨{wn−1} , {xn−1, vn−1, un−1, yn−1} , (Rn−3) ,∅⟩

and again draw this decomposition as follows.

Rn−3

.

Once Aε
k−1 is returned, the Audrey attractor is computed to the two-vertex

winning set {uk, vk} from before, whose Audrey attractor in the subgame Ck+1 turns
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out to contain only the extra vertex wk. Now, the respective Set and Move oper-

ations are performed, expelling the vertex wk from T
ε
, into S

ε1 of the even de-

composition maintained by the algorithm, thus completing the first iteration of the

outermost recursive call.

Second iteration. In the second iteration, there are no ‘extra vertices’

in the attractor to the set of top even priority vertices in the current subgame

considered. This is because now the only top even priority vertices are uk+1, vk+1

and yk+1. The complement of it is the subgame Hk∪{xk, yk}. Therefore, its attractor

turns out to be empty, so the vertex xk, which was previously in T
ε

instead, is now

assigned to S
ε1 . We now argue that the odd-level recursive calls made terminate

after only polynomial work. We do this by closely analysing what the odd recursive

call does in each of these recursive calls.

For each child εi of ε, there is an odd recursive call with the root of Audrey’s

tree ω2 and the Steven tree εi.

• On observing the labelling maintained by Steven after the previous recursive

call, we can conclude that for ε1, the number of vertices in the recursive call

itself is constant.

• For ε2, all the vertices in the scope already form an attractor decomposition,

so the work done is polynomial.

• This leaves ε3, but the set of vertices in the scope turns out to be exactly the

subgame Ok−1, which consists of only the odd layers of the game Hk−1 (defined

later), for which the algorithm takes polynomial time on this subgame from

Proposition 8.1.7 below.

We will call the subgame of Hn restricted to the odd layers On and the even

layers En. Let us prove the following proposition, which will help us to arrive at a

recurrence relation for the above lemma.

The decomposition R′
n in the following lemma is defined similarly to Rn

defined previously, but with the top-set T
ε

containing the vertex un−1 additionally.

The proof is by a simple induction.

Proposition 8.1.7. For the family of games On such that n is odd, the procedure

McNZFast-Even solves this family in polynomial time where the initial decom-

position for Steven is R′
n and the initial decomposition for Audrey is the smallest

decomposition of On.
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Proof sketch. When n = 3, the statement is trivial.

For larger n, the algorithm first computes the Steven attractor {wn, xn} to the

set of vertices with the highest priority {wn}. Following this, an odd recursive call

is made, which computes an Audrey attractor to set of vertices {un, vn, yn}, which

have the highest priority. When removing the set of vertices first in the Audrey

attractor and then in the Steven attractor, we are left with a similar substructure

of decomposition with vertices of On−2. Since only linear time passes before making

a recursive call to a game On−1, the time taken in is polynomial.

Proof of fast termination of the family Fn. We consider the family of graphs

Fn. The crux of the argument is that we identify the decomposition that is obtained

after the recursive call for this family and show that starting from this decomposition

takes only polynomial time.

Let us try to answer a simple question: What does the smallest attractor

decomposition of Fn look like?

Due to the symmetric nature of the family and the algorithm, it is enough to

answer this question for an even-valued n. The analysis for odd-valued n is similar.

We denote by Aω
n the attractor decomposition defined below for Audrey of

the game Fn, where ω is the root of Audrey’s tree at level 3n+3. We will define Aω
n

inductively, but before we do that we describe the tree T where Aω
n is an (ω, T )-

attractor decomposition. This is such that the root has an odd level of 3n+ 3. This

is because the highest priority in the game Fn is 3n + 4. Now, we describe the tree

of odd level 3n + 3, and say T3 is the tree with one leaf of odd level 3 and written

as the naturally labelled tree

T3n+3 = ⟨(1, ⟨⟩), (2, ⟨(1, ⟨(1, T3n−3)⟩)⟩)⟩ .

Henceforth, we assume that we refer to (ω, T3n+3)-decompositions, for the tree cor-

responding to one defined above.

If n = 2, then Aω
n is the (ω, T3n+3)-attractor decomposition consisting of

H
ω
= {b1}, T

ω
= {a1, d2, e2} and S

ω
= {c1, d1, e1, a0, b0, c0}.

For n > 2 and even valued n, we have the attractor decomposition Aω
n defined

as follows.

• For the first child ω1 of ω: H
ω1

= {bn−1}, T
ω1

= {an−1, dn, en} and S
ω1

=

{cn−1, dn−1, an−2, cn−2}.

• Let ω
′

be the first descendant of ω2 at level 3n − 3. Note that this would be

the first child of the first child of ω2. If confirming to the notation of adding
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Aω
′

n−2

H
ω1

Odd

S
ω1

Odd

T
ω1

Odd

S
ω2

Odd

H
ω2

Odd

Figure 8.4: Aω
n , attractor decomposition of the game Fn

the order of children to the subscript, we would have called it ω211, which

is cumbersome. Hence, we refer to it as ω. However, we have for the first

child of ω2, denoted by ω1, S
ω21

= {bn−2, en−1} and H
ω
′

= T
ω
′

= ∅. Moreover

H
ω2
= T

ω2
= S

ω2
= ∅.

• The rest of the attractor decomposition at ω
′
is obtained by declaring the side

attractor S
ω
′

A of the recursively defined (ω′, T3n+3)-decomposition Aω
′

n−2 to be

{bn−2, dn−1}.

A visual representation of this attractor decomposition is given in Figure 8.4 to aid

in understanding the proof. We call J ω
n the decomposition obtained from Aω

n by

restricting to the subgame F ′
n = Fn \ {dn, an−1, cn−1}. This is obtained just by

deleting {dn, an−1, cn−1} from Aω
n .

The following proposition shows that if J ω
n was the initial decomposition for

Algorithm 8 on the subgame F ′
n, then the algorithm takes only polynomial time to

return the winning set of F ′
n. Note that F ′

n is winning from all vertices for Steven.

and therefore the algorithm terminates with a Steven attractor decomposition for

F ′
n.

Proposition 8.1.8. For an even valued n (resp. odd), the procedure McNZFast-Even

at level 3n + 2 and 3n + 1 for Steven and Audrey, when run on the game F ′
n and

initialised with the decomposition J ω
n for Audrey and the decomposition for Steven

is the smallest decomposition, makes at most O(n) many recursive calls that are

nonempty.

One can similarly prove a proposition similar to the above for Steven, which

we just state.

Proposition 8.1.9. For an odd valued natural number n, the symmetric proce-

dure McNZFast-Odd when run on the game F ′
n, initialised with the decomposition
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J ε
n for Steven (defined similarly) and the decomposition for Audrey is the smallest

decomposition, makes at most O(n) many recursive calls that are non-empty.

We first provide the proof of Lemma 8.1.6 assuming the two previous propo-

sitions, which we prove later.

Proof of Lemma 8.1.6. Similar to the proof of Friedmann showing exponential ter-

mination, the algorithm computes the Steven attractor to highest even value: 3n+2,

which turns out to exactly be the vertex cn−1. This is followed by the Audrey at-

tractor to 3n+ 1, which turns out to be the vertices {dn, en, an−1, cn−1}. After this,

we are left with the vertices of Fn−1 to work in the recursive call. Since n was even,

n − 1 is odd and Fn−1 is winning for Steven.

This recursive call on Fn−1 here computes the Steven decomposition of this

set of vertices and returns it. Observe that this is the attractor decomposition Aω
n−1

defined earlier.

Although all vertices are winning for Steven at this level, in the recursive call

at the previous level 3n+ 1 in the subgame Fn \ {cn−2}, the winning set for Audrey

is {dn, en, an−1, bn−1} and the winning set for Steven is Fn−1.
After computing the attractor to Audrey’s winning set {dn, en, an−1, bn−1} in

the subgame Fn and removing it from the game for the next set of vertices, what

we are left to operate on is exactly F ′
n−1. The decomposition we have at hand

restricted to these vertices is exactly the decomposition described above for F ′
n−1:

J ω̂
n where ω̂ has the level 3n. From Proposition 8.1.9, we know that this terminates

in polynomial time.

Let T (n) denote the time taken to solve Fn when the Audrey and Steven

decomposition are the initial Steven and Audrey decompositions possible for the

vertices of Fn, then we obtain the recursive relation:

T (n) = T (n − 1) + F (n − 2) + nc

where F (n) is the time taken to solve the game with the conditions given in Propo-

sition 8.1.8.

Proof of Proposition 8.1.8. We start with the decomposition J ω
n for Audrey and

the smallest decomposition for Steven on the set of vertices of F ′
n. To prove the

proposition, we show that the algorithm only makes O(1) many recursive calls and

at most polynomial work on the decomposition both before and after making a

recursive call on a subgame F ′
n−2 with the initial decomposition being J ω

n−2 and the

initial decomposition for Audrey. The above claim will show that F (n) satisfies the
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recurrence relation F (n) = n
c + F (n − 2), where F (n) is the time taken for the

algorithm on F ′
n with the mentioned decompositions.

The first call is to McNZFast-Odd at level 3n+ 3 at a node in the Audrey

tree ω and level 3n + 2 for Steven with node ε although the highest priority in F ′
n

is 3n + 1 from vertex bn−1.

For each child ωi of ω, the algorithm computes the even attractor to vertices

of priority 3n+2. In each iteration, this is empty. Henceforth, to refer to the current

decomposition maintained by the algorithm, we use D to refer and reserve J for the

original one which the algorithm started with.

In the first iteration, the algorithm computes the Steven attractor to all

vertices not in [J ω1
n ].

• Observe that [J ω1
n ] = {en, bn−1} and the Steven attractor to the complement

contains all the vertices of F ′
n. So, we get an empty recursive call.

• The vertices in [J ω1
n ] are moved to S

ωi in the Audrey decomposition Dω
.

• The Audrey attractor to the empty set returned turns out to be empty. This

all the vertices in S
ωi are moved to JDω2

n K

We proceed to the next iteration with the same set of vertices, but the decomposition

of Audrey is modified to include all vertices in [Dω2
n ]. The algorithm is now at

the next child of ω. For the next iteration, rooted at ω2 observe that we have

H
ω2
= bn−1 and T

ε2 is the set {en, cn−1, dn−1, an−2} while the other partitions in the

odd decomposition are the same as before in Dω
n .

We enumerate the changes in the next few steps.

1. We start with the sets defined asH
ω2
= {bn−1} and T

ω2
= {en, cn−1, dn−1, an−2}

as mentioned above. However, the attractor to bn−1 is the set {bn−1, en},

and hence in the next step, T
ω2

= {en}. The algorithm expels the vertices

{cn−1, dn−1, an−2} to the first child of ω2. Let us call this ω
′
2. We have H

ω
′
2
=

{cn−2}, given that it has priority 3n− 1. The rest of the vertices {dn−1, an−2}
are now at T

ω
′
2 .

2. An Steven recursive call is again made at level 3n to all vertices other than

{bn−1, en}, but since there are no vertices of that priority, this soon makes

an Audrey recursive call at level 3n − 1. In this Audrey recursive call, is at

Audrey’s node ω
′
2. In this recursive call, the Audrey attractor is computed to

H
ω
′
2
= {cn−2}, which is just itself. Therefore, the rest of the items are moved

to the first child of ω
′
2.
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3. Finally, another Steven recursive call is made; however, this only triggers an

Audrey recursive call at level 3n − 3. We observe that at this level of the

algorithm, we are only left with the vertices of F ′
n−2 and the decomposition

restricted to Dω
n−2. We see that there is not much change in the Steven decom-

position and restricted to this level, the Steven decomposition is the smallest

decomposition.

The work done above is polynomial before the recursive calls. At the end of the

recursive call at level 3n− 2 for Steven and 3n− 1 for Audrey, we know that all the

vertices of Fn−2 along with {bn−2, en−1, dn−1, an−2, cn−2} are in the part S
ω
′

where

ω
′
is the first descendant of ω2 at level 3n− 3. Instead of writing it step by step, we

conclude by saying that after 3 attractor computations for Audrey, all vertices are

mapped to the side set of level 3n+ 2, and all these vertices are returned at the end

of the recursive call as winning for Steven. This gives us the required recurrence

relation: F (n) = nc + F (n − 2) for the time taken to solve the above.

8.2 A symmetric attractor-based algorithm

The use of quasi-polynomial universal trees in the attractor-based algorithms of

Parys [Par19, LPSW22], as well as that of Lehtinen, Schewe and Wojtczak [LSW19,

LPSW22] was highlighted by Jurdziński and Morvan [JM20, JMT22]. The algo-

rithm of Jurdziński and Morvan (Algorithm 1), when instantiated with specific

universal trees, produces the algorithm of Parys [Par19] or Lehtinen, Schewe, and

Wojtczak [LSW19]. A report on which universal trees correspond to which algorithm

from their work has been summarised in Chapter 2 of the thesis. Therefore, we will

deal with the more general attractor-based algorithm of Jurdziński and Morvan.

Although symmetric attractor-based algorithms are elegant, and efficient, the

theoretical complexity of these algorithms does not match the complexity of state-

of-the-art algorithms. The Jurdziński-Morvan algorithm takes time proportional to

the product of size of the two trees that it is instantiated with. This is in contrast

to the algorithms with state-of-the-art worst-case complexity [JL17], which takes

time that is linear in the size of the tree. In fact, Lehtinen, Parys, Schewe and

Wojtczak [LPSW22] emphasise that the complexity of quasi-polynomial attractor-

based algorithms is almost the square of the complexity of other quasi-polynomial

algorithms [JL17, FJdK
+

19]. In this section, we describe how our technique can be

applied to the algorithm of Jurdziński and Morvan [JMT22], which in turn shows

that the algorithm of Parys [Par19], as well as the algorithm of Lehtinen, Schewe

and Wojtczak [LSW19, LPSW22] would benefit from our treatment.
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Much like the approach adopted by Jurdziński and Morvan, where the recur-

sive calls of the McNaughton-Zielonka algorithm were generalised to be dictated by

two arbitrary trees, Algorithm 9, which generalises the decomposition-using version

of McNaughton-Zielonka algorithm (Algorithm 8), also dictates its recursive calls

within the framework of two arbitrary trees. Our algorithm, which uses two arbitrary

trees T Odd
and T Even

, contains two mutually recursive procedures Univ-Even-Fast

and Univ-Odd-Fast. These procedures take as input a game G, the highest priority

h in the game, and two nodes ε and ω from T Odd
and T Even

respectively. The nodes

ε and ω have level h and h + 1 respectively in their trees for Steven’s procedure

Univ-Even-Fast and vice versa for Audrey’s procedure Univ-Odd-Fast. The

pseudocode for the Steven recursive call is given in Algorithm 9, whereas Audrey’s

is obtained by swapping the roles of the players. We emphasise that, except for the

iterative loop, this algorithm is similar to the procedure in Algorithm 8.

Theorem F. For a parity game G and two trees T Odd
and T Even

, the procedure

Univ-Even-Fast (resp. Univ-Odd-Fast) in Algorithm 9 (on page 140) takes time

n
O(1) ⋅O(max (∣T Odd∣, ∣T Even∣)) to identify a set of vertices that includes all Steven

dominia of G with a T Even
-attractor decomposition and does not intersect with any

Audrey dominia with a T Odd
-attractor decomposition.

The rest of the section is dedicated to the proof of the above theorem. Sim-

ilar to our proofs of correctness for the asymmetric version of the algorithm, the

proof of correctness of our algorithms extensively uses the fact that our algorithm

modifies this decomposition monotonically. The high-level arguments involved are

that we increase the Steven and Audrey decompositions at each iteration. The cor-

rectness is based on the fact that we never increase the decompositions “too much”.

The running time complexity of our algorithm is based on the fact that it does

not take “too long” before there is an increase in the value of decompositions at

least in one of our decompositions. Let AEven and AOdd be the smallest attractor

decomposition larger than the current decompositions DEven and DOdd. We argue

that the decompositions satisfy the invariant that DEven and DOdd are smaller than

AEven and AOdd, respectively, at each step. We, moreover, argue that between each

increase to the decomposition, only polynomial time passes.

We emphasise that not all implementations of our algorithm would have

the claimed running time, but we can achieve this with carefully designed data

structures. One way to obtain a fast implementation would require a data structure

that stores each decomposition as a decomposition labelling. This ensures that

instead of keeping track of a partition with O (∣T ∣) many parts, we can instead

represent each node in the tree succinctly and store the node associated to the
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Algorithm 9 A fast, symmetric, attractor-based algorithm

Input: A parity games G with highest priority h and nodes ε in the even tree T Even

whose even level is h and ω in the odd tree T Odd
whose odd level is h + 1.

Output: A subset of vertices of G ▷ This subset corresponds to the winning
vertices for Steven if T Even

and T Odd
are universal.

1: procedure Univ-Even-Fast(G, h, ε, ω)
2: if Dε

Even restricted to G is an attractor decomposition then
3: Set (SωOdd, V (G))
4: return V (G)
5: else if Dω

Odd restricted to G is an attractor decomposition then
6: Set (SεEven, V (G))
7: return ∅
8: else
9: G1 ← G

10: for each ωi among ω1, . . . , ωk: children of ω do
11: Hi ← π

−1(h) ∩ Gi
12: Ti ← Steven attractor to Hi in Gi
13: Ri ← T

ε
Even \ Ti

14: MoveDEven
(Ri)

15: Si ← Ti ∩ [Dωi

Odd]
16: Set (Sωi

Odd, Si)
17: G ′i ← (Gi ∩ [Dωi

Odd])
18: U

′
i ← Univ-Odd-Fast(G ′i, h − 1, ε, ωi)

19: S
′
i ← Audrey attractor to U

′
i in Gi

20: R
′
i ← S

ωi

Odd \ S ′i
21: MoveDOdd

(R′i)
22: Qi ← S

′
i ∩ [Dε

Even]
23: Set (SεEven, Qi)
24: Gi+1 ← Gi \ S ′i
25: end for
26: end ifreturn V (Gi+1)
27: end procedure
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leafy tree for each vertex. Since there are at most n vertices, this decomposition

labelling would have a significantly smaller representation than storing a partition

with as many parts as the size of either a quasi-polynomial or exponential sized tree.

Moreover, using such a representation, we can ensure that recursive calls are never

made on an empty set of vertices. This is achieved by only making a recursive call

at a node of the tree when there is some vertex of the game whose decomposition

labelling of this vertex is a descendant of this node.

We also argue that, in addition to making recursive subcalls, the algorithm

only computes attractors and performs the respective Set and Move subroutines.

Since these are relatively cheap operations, we are content with computing the

number of recursive calls made by the algorithm to establish its running time up to

a polynomial factor.

Lemma 8.2.1. Let G be an (n, h)-small parity game where h is even, and let T Even

and T Odd
be two trees of with roots ε and ω respectively. Let AEven be the smallest

Steven (ε, T Even)-attractor decomposition of G and similarly AOdd, the smallest Au-

drey (ω, T Odd)-attractor decomposition. The procedure Univ-Even-Fast(G, h, ε, ω),

with the decomposition being the initial Steven and Audrey decomposition of G out-

puts a set of vertices W such that JAε
EvenK ⊆W ⊆ V (G \ JAω

OddK).

Proof. For this proof, we use the bijection between decompositions and decomposi-

tion labellings introduced in Chapter 6 and the order on decomposition introduced

in Chapter 7. We lists the exact invariants required after each recursive subcall. If

the decompositions at the beginning of a recursive call satisfy

1. Dε
Even ⊑ Aε

Even and Dω
Odd ⊑ Aω

Odd;

2. Steven has no strategy from any vertex in G to ensure the play proceeds to a

vertex whose corresponding decomposition labelling is strictly smaller than ε

in L (T Even) without visiting a vertex larger than ε
S

3. Audrey has no strategy from any vertex in G to ensure that the play proceeds

to a vertex whose Audrey decomposition-labelling is strictly smaller than ω
T

in L (T Odd), without visiting a vertex of with labelling ω
S

.

4. V (G) = [Dε
Even] ∩ [Dω

Odd].

then procedure Univ-Even-Fast described in Algorithm 9 on input (G, h, ε, ω)
terminates with decompositions EεEven and EωOdd:

(a) EεEven ⊑ Aε
Even and EωOdd ⊑ Aω

Odd;
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(b) for each vertex v ∈ V (G), at the end of the algorithm, either v belongs to

[EωOdd] or [EεEven];

(c) the set of vertices returned is exactly [EεEven].

Moreover, if the two trees are complete n-ary trees, EεEven = Aε
Even and EωOdd = Aω

Odd.

We start with two decompositions for vertices in G: Dε
Even and Dω

Odd, both

smaller than the attractor decompositions Aε
Even and Aω

Odd respectively. We show

that each step of the algorithm modifies the decompositions Dε
Even and Dε

Odd in an

inflationary manner whilst maintaining the invariant Dε
Even ⊑ Aε

Even and Dω
Odd ⊑

Aω
Odd.

We first deal with the if-else-if conditions in the algorithm that determine if

the decomposition is already an attractor decomposition for either for the players.

Dε
Even is an attractor decomposition of G for Steven. Any play that stays

within G is winning for Steven as the decomposition Dε
Even is a witness that Steven

can win the game. So, Audrey can win if and only if the game exits the subgame of

G in the larger game. If she remains in G, she loses. If not, from Item 3, Steven has

a strategy to ensure that Audrey visits a vertex mapped to ω
S

or larger. Therefore,

from the dual of Proposition 7.2.6, we know that [Aω
Odd] does not have any vertices

in G.

The algorithm moves all these vertices to S
ω
Odd. As there are no dominions

for Audrey in G, the smallest attractor decomposition larger than Dω
Odd would have

to have all vertices at a position larger than ω
S

. This ensures EωOdd ⊑ Aω
Odd. For

each vertex v ∈ V (G), at the end of the algorithm, all vertices v belong to [Dε
out],

satisfying the second condition.

Dω
Odd is an attractor decomposition of G for Audrey. The arguments are

similar to those above.

Both Dω
Odd and Dε

Even are not attractor decompositions. Here, we show that

after the i
th

iteration of Univ-Even-Fast,

• the invariant Dε
Even ⊑ Aε

Even and Dω
Odd ⊑ Aω

Odd is preserved,

• each vertex in Gi+1 is mapped by the current decomposition-labelling to a

position that is strictly larger than ωi
S

by the Audrey decomposition-labelling

obtained from DOdd.
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We use subscripts to identify which parts of decomposition or attractor de-

composition we are dealing with. For example, we use sets H
ε
A, T

ε
A, and S

ε
A to refer

to the sets in the smallest attractor decomposition AEven, and similarly H
ε
D, T

ε
D, and

S
ε
D for the decomposition Dε

Even and so on.

MoveDEven
(Ri). The algorithm computes the attractor Ti to the set of ver-

tices Hi containing the highest priority vertices and performs MoveDEven
(Ri).

Since Dε
Even ⊑ Aε

Even, we know that for any element η in the leafy tree, the

set of vertices mapped to a position smaller than η by the decomposition labelling

corresponding to Dη
is a superset of all vertices mapped to a position smaller than

η by Aη
. The smallest element in the even decomposition is ε, and this gives us

G ∩ (Hε
A ∪ T

ε
A) ⊆ Hi ∪ Ti. The operations performed involve first identifying the

set of vertices Ri = T
ε
Even \ Ti. From any of these vertices in Ri, Steven does not

have a strategy to reach Hi, which is a superset of H
ε
A. Therefore, we can conclude

that from the vertices in Ri, Steven does not have a strategy to visit H
ε
A, and

thus none of the vertices in Ri belongs to the top attractor set T
ε
A in the attractor

decomposition. Since each vertex in Ri is not present in T
ε
A, the subroutine Move

increases the decomposition minimally whilst still staying below the least attractor

decomposition.

Set (Sωi

Odd, Si). Observe that Si is the set of vertices in which Steven has a

strategy to visit the set of vertices whose labellings in Dωi currently at least as large

as ωi
S

. From Proposition 7.2.6, we can deduce that all vertices in Si at positions

(with respect to the current decomposition labelling) that are strictly smaller than

ωi
S

have an empty intersection with [Aωi

Odd]. This turns out to exactly be the set of

vertices that are re-labelled after the subroutine Set (Sωi

Odd, Si) with a value larger

than ωi
S

(the side attractor node of ωi).

The recursive subcall on G ′i. We outsource this task to induction. First,

we observe that all the requirements are satisfied for the induction hypothesis.

1. After the recursive subcall on ε and ωi, the decompositions are bounded above

by the respective attractor decompositions.

2. Audrey has no strategy from any vertex in G ′i to ensure the play proceeds to a

vertex whose corresponding decomposition labelling is strictly smaller than ωi

in L(T Odd) without visiting a vertex larger than ωi
S

. This follows because of

the inductive invariants together with the arguments above for Set (Sωi

Odd, Si).
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3. Steven has no strategy from any vertex in G ′i to ensure that the play proceeds

to a vertex whose corresponding decomposition labelling is strictly smaller

than ε
T

in L(T Odd) without visiting a vertex larger than ε
S

. This is because

of the line MoveDEven
(Ri).

4. Moreover, all vertices in G ′i are at parts such that either the Steven or Audrey

decomposition (labelling) maps these vertices to a point at least as large as ε
S

or ωi
S

, respectively.

MoveDOdd
(R′i). The vertices in Gi in [Dωi] are exactly U

′
i. Hence, any

vertex in S
ωi but not in S

′
i has no attractor strategy to S

ωi . Using arguments

similar to the previous Move operation, we conclude that they preserve the invariants

Dε
Even ⊑ Aε

Even and Dω
Odd ⊑ Aω

Odd.

Set (SεEven, Qi). S
′
i is the Audrey attractor to the set U

′
i. All vertices in

U
′
i, in the Steven decomposition are at a position at least as large as ε

S
. This is

from the second invariant, combined with the observation that U
′
i consists of exactly

those vertices in [Dωi

Odd]. The algorithm computes Qi which consists of all vertices

in [Dε
Even] that have an Audrey attractor strategy to U

′
i. From Proposition 7.2.6

in Chapter 7, we can conclude that the decomposition can be changed such that

these vertices are now moved to a position that is at least the side attractor of ε,

to the set S
ε
D. Such a change would preserve the invariants that we started with

and would ensure that our modified decomposition is still smaller than the attractor

decompositions.

Moreover, we are left exactly with vertices that are not mapped to values

larger than ε
S

After the k
th

iteration. After the k
th

iteration, we have shown that

1. the invariant Dε
Even ⊑ Aε

and Dω
Odd ⊑ Aω

is preserved, and

2. each vertex in Gk+1 is at position that is strictly larger than ωk
S

, which is at

most ω
S

.

Using a similar proof, we can show the correctness stated also for Algorithm 8.

We recall our theorem and proceed to prove it below.

Theorem 8.1.3. Let G be a (n, h)-parity game and let ε and ω be nodes that have

even level and odd level h and h+1 in the two N-labelled n-ary trees T Even
and T Odd

respectively. Procedure McNZFast-Even(G, h, ε, ω), initialised with the smallest
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T Even
-decomposition of G for Steven and the smallest T Odd

-decomposition of G for

Audrey, terminates with the smallest Steven T Even
-attractor decomposition for the

Steven dominion and the smallest Audrey T Odd
-attractor decomposition for the Au-

drey dominon in G.

Proof. We claim that if the branching is not restricted, as is the case with Algo-

rithm 8, we can add an additional invariant in our previous proof which states that

every recursive call returns an attractor decomposition.

If the algorithm terminates on either the if or the else-if condition, we are

done, since one player has a decomposition and for all other players the vertices are

now at the side attractor of the other player.

If not, we need to argue that in each iteration of the for-loop of the algorithm

the right subset of vertices is passed in the recursive subcall. Observe that each

subtree of every complete n-ary tree also is a complete n-ary tree. We add this

inductive invariant, with the additional condition that the trees are n-ary complete

trees for both players. We further state that the necessary condition is the following:

For each subgame that is recursively passed, and for each tree that is cor-

responding to that level of recursion, the Audrey and Steven dominions in that

subgame must have an attractor decomposition with respect to these trees.

Indeed the complete n-ary tree fits this criterion, as they are

• large enough to fit all attractor decompositions for any subgame and

• their subtrees passed are also complete n-ary trees.

Consider the decomposition Dε
Even and Dω

Odd smaller than Aε
and Aω

. We

will show that after the i
th

iteration, the Audrey decomposition maintained is such

that all vertices in JDωi

OddK form an attractor decomposition for Audrey and are the

same as the attractor decomposition Aωi

Odd.

In the first step, we compute an attractor to vertices of priority h in the

subgame Gi. Observe that the dominion of Audrey [Aωi] does not intersect with

this attractor. This has been argued in the previous proof using Proposition 7.2.6

in Chapter 7. Moreover, since [Aωi] is a trap for Steven, and hence all Audrey

dominions in Gi are preserved in this trap.

This recursive subcall therefore identifies this set of vertices in [Aωi] and

hence also accurately computes S
ωi , its side attractor and removes it from Gi. Since

the algorithm terminates only when we find an attractor decomposition, we also

claim that both players on termination have an decomposition.
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Running time We show how our algorithm runs in time that is at most linear

in the size of each of the tree, a significant reduction from other attractor-based

algorithms with a quadratic dependence.

We show that procedure Univ-Even-Fast (resp. Univ-Odd-Fast) makes

O(nc ⋅max (∣T Odd∣, ∣T Even∣)) many recursive calls for a constant c. The time taken

to perform each operation outside of the recursive calls is polynomial in n, thus

making the running time of this algorithm n
O(1) ⋅max (∣T Odd∣, ∣T Even∣).

Lemma 8.2.2. For an (n, h)-small parity game G, the number of recursive calls

made by procedure Univ-Even-Fast (resp. Univ-Odd-Fast) with trees T Odd
and

T Even
is bounded by O(nc ⋅min (∣T Odd∣, ∣T Even∣)) for a constant c. The time taken

to perform each operations outside of the recursive subcalls is a polynomial in n.

Proof. Since the operations performed themselves take only polynomial time, the

running time of the algorithm is dominated, up to a polynomial factor, by the

number of recursive calls made. Therefore, the total running time would be at most

a product of a polynomial in n and h and the number of recursive calls made.

We call a recursive call trivial if it is an empty recursive call. If a subcall at

level ε for Steven and ω for Audrey is empty, of course, we do not make any further

recursive calls to its children, and we move to the following recursive call to next

sibling in the tree for ε. This does not contribute to a large overhead because with

the help of specific data structures that keep track of the next sibling whose parts

in decomposition is non-empty, looking through all siblings could be avoided.

If a recursive subcall is non-trivial, then we see that there is a strict increase in

the decomposition of either Audrey or Steven in this recursive call as we have shown

in the proof of Lemma 8.2.1. This is due to the invariant that the decomposition

is always modified in such a way that the intersection of [Dε] and [Dω] is empty.

Since we begin with a non-empty set, and we only perform monotonic operations

on the decomposition, we prove our desired bound on the running time.

We can further show an improved running time of O(nc ⋅min (T Odd
, T Even))

with a small modification. Let us call a recursive call accelerating if this call does

not enter the else statement of the algorithm. That is, the decomposition is already

an attractor decomposition for at least one player.

Observe that if a recursive call is non-accelerating and nontrivial, then for

both players, there is at least one vertex that is such that in any attractor decompo-

sition larger than the current decomposition, this vertex is not in the current part.

Identifying such vertices can be performed alongside the check to verify whether we

already have an attractor decomposition. Once we identify such a vertex for both
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the Audrey and Steven decomposition, we can increase it minimally at the end of

each recursive call if its position remains unchanged.

This forces an increase for both the decompositions, ensuring that our algo-

rithm terminates in time O(nc ⋅min (T Odd
, T Even)).

8.3 Outlook

A weakness of all quasi-polynomial symmetric attractor-based algorithms—including

ours—is that they may output correct winning sets, but without constructing win-

ning strategies. This is a major shortcoming in the context of synthesis, where win-

ning strategies correspond to the desired controllers. We argue that our technique,

which is based on computing decompositions that are under-approximations of the

least attractor decompositions, allows one to tackle this weakness with a modest ad-

ditional computational cost. If the algorithm terminates with a decomposition that

is not an attractor decomposition, then the decomposition obtained can serve as a

starting point to make further progress. We can then run the asymmetric algorithm

or the strategy improvement algorithm from the previous chapters for each player.

This would repeatedly modify the decomposition until an attractor decomposition

is obtained. This addition does not increase the worst-case asymptotic running time

by more than a polynomial factor.

We have illustrated that our technique, when applied to the standard McNaugh-

ton-Zielonka algorithm, yields an algorithm that can solve some hard examples [Fri11]

in polynomial time. Other families of hard examples [vD19, BDM20] should also be

analysed. Should our technique also solve them in polynomial time, delving into the

structural challenges hindering the construction of hard examples could potentially

offer fresh insights to tackle central questions in the algorithmic study of parity

games.
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Part III
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Chapter 9

Rabin games and colourful trees

In this chapter, we shift our focus from parity games to Rabin games, a generalisation

of parity games. Rabin games lie at the core of reactive synthesis for ω-regular or

LTL specifications, and efficient algorithms for Rabin games are of practical interest

in synthesis tools [Pnu77, BJP
+

12].

Rabin automata already appear in McNaughton’s solution of Church’s syn-

thesis problem [Chu57, McN66] and in Rabin’s proof of the decidability of SnS

[Rab69], where it was first defined in the setting of infinite trees. To solve Church’s

synthesis problem for ω-regular specifications, represented by non-deterministic Büchi

automata, there are two (polynomial-time equivalent) approaches: either reduce to

the emptiness problem for Rabin tree automata or solve a Rabin game.

As discussed earlier, Rabin conditions are also suitable specifications for gen-

eral fairness constraints [FK84]. Klarlund and Kozen [KK91] defined Rabin mea-

sures over graphs and applied them to prove termination of a program under a

general fairness constraint. Indeed, the acceptance condition that defines strong

fairness, i.e. if a given set of actions (edges) is enabled infinitely often (the source

vertex are seen infinitely often), it is taken infinitely often, is naturally expressed by

the complement of the Rabin condition, called the Streett condition.

We briefly recall the algorithms to solve Rabin games in Table 9.1 discussed

in the introduction of the thesis, which details the history of such algorithms.

Calude, Jain, Khoussainov, Li and Stephan’s algorithm [CJK
+

22] to solve

parity games also gave fixed-parameter tractable (FPT) algorithms for Muller games

on k colours, where the dependence on the number of colours is of the order k
5k

. It

is known that a Rabin game with k colours can be translated into a Muller game

using at most 2k colours (but with the number of vertices increased by a factor

of k) thereby giving a direct algorithm to solve Rabin and Streett games in time
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Year Algorithm Time complexity

1988 Emerson and
Jutla [EJ88,
EJ99]

O(nk)3k

1989 Pnueli and Ros-
ner [PR89]

O(nk)3k

2001 Kupferman and
Vardi [KKV01]

O(mn2k ⋅ k!)

2005 Horn [Hor05] O(mn2k ⋅ k!)
2006 Pieterman and

Pnueli [PP06]
O(mnk+1k ⋅ k!)

2017 Calude et
al., [CJK

+
22]

O(nk2 ⋅
k!m)log k+6

2017 Jurdziński and
Lazic [JL17]
or Fearnley et
al. [FJdK

+
19]

O(nm ⋅ k!
2+o(1))

Table 9.1: Algorithms that solve Rabin games

proportional to O((2k)5⋅2
k

). They further remarked that a more efficient way to

solve Rabin game would be to convert a Rabin game to a parity game rather than

a Muller game and solve the obtained parity game.

A Rabin game with n vertices, m edges, and k colours can be reduced to a

parity game with N = n⋅k! vertices, M = m⋅k! edges, and K = 2k+1 colours [GH82]

and to solve a Rabin game, one can instead solve this larger parity game (the priority

on these games however appear on edges). While using the algorithm proposed by

Calude et al. would exacerbate the space complexity of solving an already exponen-

tially large parity game, choosing to use state-of-the-art parity game algorithms that

improve on the space efficiency—such as the one by Jurdziński and Lazić [JL17]—

enables the solution of Rabin games in time O(max {MN
2.38

, 2
O(K logK)}). How-

ever, it is worth noting that exponential space requirement remains a characteristic

of such solutions.

On substitution N , M , and K, the algorithm of Jurdziński and Lazić would

take time O(mn2.38(k!)3.38). However, observe that the parity game obtained from

a Rabin game is such that the number of vertices N = n ⋅ k! is much larger than

the number of colours K = 2k + 1. This results in K ∈ o(log(N)) as k increases.

For cases where the number of vertices of the resulting parity game is much larger

than the number of priorities, say the number of colours K is o (log (N)), Jurdziński
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and Lazić’s algorithm solves these parity games obtained from Rabin games in time

O(nmk!
2+o(1)) [JL17, Theorem 7]. Closely matching this are the running times in

the work of Fearnley et al. [FJdK
+

19] who provide, among other bounds, a quasi-

bilinear bound of O(MNa(N)log logN), where a is the inverse-Ackermann function.

Therefore, the algorithm with the best worst-case time complexity has at least a

(k!)2+o(1) dependence on the factorial of k in its running time and takes a space

proportional to (nk2 ⋅ k!) log(nk2 ⋅ k!), which again has a k! dependence.

There is a Õ(nk) space algorithm by Piterman and Pnueli [PP06] which

holds the crown for the smallest space requirements so far. However, this algorithm

has a O(nk ⋅ k!) worst-case runtime (although the space complexity is claimed to

be O(nk) in their paper, the exact bit complexity one needs would include an extra

log n factor to encode each vertex and log k bits to encode each colour).

In this chapter, we provide an algorithm that breaks through the 2 + o(1)
barrier, while simultaneously using polynomial space, O(nk log n log k), improving

on Piterman and Pnueli’s algorithm as well as algorithms that convert to a parity

game, to give an FPT algorithm for Rabin games.

Our algorithm is achieved by firstly arguing that Rabin games have a colour-

ful decomposition. Colourful decompositions are further extensions of attractor

decompositions, modified to suit Rabin games. We then observe that these colour-

ful decompositions naturally correspond to colourful trees. These colourful trees

are a modified version of the pointer trees of Klarlund and Kozen. We then define

colourful universal trees, which can embed any colourful tree. Just as Piterman

and Pnueli’s result generalised ranking techniques and progress measures for parity

games, we generalise the notion of measures [KK91] and Jurdziński-Lazić universal

trees [JL17] to obtain our algorithm.

9.1 Colourful trees and labelled colourful trees

To solve parity games, we had considered ordered trees, defined inductively as a

tuple consisting of other ordered trees. To tackle Rabin games, we branch out to

consider a closely related notion to ordered trees, which we call colourful ordered

trees.

(c0, C)-Colourful ordered Trees. Let C be a finite set of colours and let c0 ∉ C

be a distinct colour assigned only to the root of a tree. Informally, a (c0, C)-colourful

ordered tree is a tree whose root is assigned the unique colour c0, and and every

other node has a colour from C associated to it. In addition, we expect that for
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all paths, every node along this path from the root to a leaf is assigned different

colours. However, as an exception, we allow some leaves to remain uncolored, which

we denoted by a “dummy colour” ⊥ ∉ C. Observe that our requirement about

nodes having different colours ensures that the height of the tree is bounded by at

most ∣C∣.
Formally, for a finite set C, we recursively define (c0, C)-colourful trees

• if C = ∅, we say T is a (c0,∅)-colourful tree if either

– T = (c0, ⟨⟩), and is the tree with a single node coloured by c0 or

– T = (c0, ⟨(⊥, ⟨⟩) , . . . , (⊥, ⟨⟩)⟩), and is a tree where all the children of

the root have the dummy colour ⊥.

• if C ≠ ∅, we say T is (c0, C)-colourful tree if it is either

– a (c0,∅)-colourful tree rooted at c0; or

– T = (c0, ⟨T1, . . . , T`⟩), and for all i ∈ {1, . . . , `}, either there is a colour

ci ∈ C and Ti is a (ci, C \ {ci})-colourful ordered tree, or Ti = (⊥, ⟨⟩).
Note that these ci need not be different from each other.

For two trees whose root colour is the same, we define concatenation similar to

ordered trees, as the tree obtained by a sequential composition of the two trees. We

define the concatenation of a (c0, C1)-colourful tree T1 = (c0, ⟨T 1
1 , . . . , T

m
1 ⟩) and

a (c0, C2)-colourful tree T2 = (c0, ⟨T 1
2 , . . . , T

`
2 ⟩) as the (c0, C1 ∪ C2)-colourful tree

(c0, ⟨T 1
1 , . . . , T

m
1 , T 1

2 , . . . , T
`
2 ⟩), written as T1 ⋅ T2. For a root colour c0, a number

` ∈ N, and a (c0, C)-colourful ordered tree (c0, ⟨T ⟩), we denote (c0, ⟨T `⟩) to be

the tree with ` many copies of T , (c0, ⟨T , T , . . . , T ⟩). When (c0, C) is clear from

context, we simply say “colourful tree.”

Embedding colourful trees. Given a (c0, C)-colourful trees U and T , we say U
embeds T if T = (c0, ⟨⟩), or T = (c0, ⟨T1, . . . , T`⟩) and U = (c0, ⟨U1, . . . ,Um⟩) for

some `,m, and there is an increasing sequence of indices 1 ⩽ i1 < i2 < ⋅ ⋅ ⋅ < i` ⩽ m

such that Uij embeds Tj recursively.

Labelled colourful trees. In what follows, we shall additionally label colourful

trees with labels from some linearly ordered set. This is similar to the definition of

labelled ordered trees in the preliminaries, but we avoid the recursive definition, as

it is more convenient to define such labelled colourful trees as prefix-closed sets of

sequences, using the isomorphism between a (recursively defined) tree and its set of

paths.
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Let L be a set of labels with a linear ordering <L over the set labels L. We use

C
⊥

to denote the set obtained by adding the a new ⊥ to C, that is, C
⊥
= C ∪ {⊥}.

Let L×C⊥ be the Cartesian product of L and C
⊥

. We avoid the tuple to denote an

element of L×C⊥, and instead write αc or α⊥ for elements (α, c), (α,⊥) ∈ L×C⊥.

An L-labelled (c0, C)-colourful tree is a finite prefix-closed set of sequences

over L × C⊥ such that only the maximal elements of this set contain, as a term,

elements from L × {⊥}.

Given an element τ0 ∈ L × C
⊥

and a sequence ⟨τ1, τ2, . . . , τj⟩ of elements

with each element from L × C
⊥

, we use ⊙ to denote concatenation to the tuple,

where we say τ0 ⊙ ⟨τ1, τ2, . . . τj⟩ = ⟨τ0, τ1, τ2, . . . τj⟩. We extend this notation to

sets of sequences L, by defining τ0 ⊙ L as the prefix-closure of the set of sequences

{ ⟨τ0, τ1, τ2, . . . τj⟩ ∣ ⟨τ1, τ2, . . . τj⟩ ∈ L }.

We say that an L-labelled (c0, C)-colourful tree L is an L-labelling of a

(c0, C)-colourful ordered tree T if

• if T = (c0, ⟨(⊥, ⟨⟩)m⟩), then L is the set {⟨⟩}∪ {⟨α1⊥⟩ , . . . , ⟨αm⊥⟩} for some

α1 <L α2 <L ⋅ ⋅ ⋅ <L αm ∈ L, or

• if T = (c0, ⟨T1, . . . , Tm⟩), then L is the set

m

⋃
i=1

αici ⊙ Li

for some increasing values α1 ⩽L α2 ⩽L . . . ⩽L αm in L, such that for all i in

{1, . . . ,m},

– Ti is a (ci, C \ {ci})-colourful tree and Li is an L-labeling of Ti,

– ci ∈ C
⊥

, and

– whenever the elements from the label set αi = αi+1, the corresponding

colours ci ≠ ci+1.

Note that the root colour c0 of the colourful tree T does not appear in L; instead of

tracking c0 along with L explicitly, we implicitly assume the root colour of the tree

L above is c0.

We refer to elements of a labelled colourful tree L as nodes of the tree. For two

nodes n1 and n2 in L, we define the greatest common ancestor, written GCA(n1, n2),
as the longest common prefix of n1 and n2. We define n1 as an ancestor of n2 if

n1 = GCA(n1, n2). In particular, n1 is a parent of n2, written n1 = parent(n2), if n1

is the largest node other than n2 such that n1 = GCA(n1, n2); then we say that n2

is a child of n1.

153



1
1

11

1 2 1 2

221

2
2

2 2

1 1

2

Figure 9.1: A colourful tree.

The colouring of a node is defined as the last colour that occurs in the se-

quence: For the empty sequence ⟨⟩, we define the colour of ⟨⟩, denoted by colour(⟨⟩)
as c0 and colour (⟨α1ci1 , . . . , αjcij⟩) = cij . Furthermore, we define ColourSet as a

function from the set of nodes of a labelled colourful tree to the subset of colours

P(C ∪ {c0,⊥}). This function maps a node to the set of colours seen from the

root to that node ColourSet(n) = {colour(n′) ∣ n′ = GCA(n′, n)}. For example, con-

sider the colourful tree in Fig. 9.1 and the node ⟨1 , 1 , 2 , 2 ⟩ in it. The colour

of the node, denoted by colour(⟨1 , 1 , 2 , 2 ⟩) = and ColourSet(⟨1 , 1 , 2 , 2 ⟩) =
{ , , , , }. Whereas for the node ⟨1 , 1 , 1 ⟩, we have colour(⟨1 , 1 , 1 ⟩) = and

ColourSet(⟨1 , 1 , 1 ⟩) = { , , , }.

Ordering of nodes. We define a total linear order ≺L on the nodes of a fixed

colourful tree L. First, we fix some arbitrary linear order on the set C
⊥

such that

⊥ is the largest element in the ordering. We compare elements by extending the

linear order <L over L and an arbitrary fixed order < over C to a linear order over

the set L×C⊥ lexicographically. For two elements α1c1, α2c2 in L×C⊥, we define

α1c1 < α2c2 if either α1 <L α2 or α1 = α2 and c1 < c2.

For two nodes n1, n2 ∈ L, we define n2 ≺L n1 if either n2 is a strict prefix

of n1, or if n1 is lexicographically larger than n2 when viewed as sequences over

L× (C ∪ {⊥}). We remove the subscript L when the labelled colourful tree is clear

from the context.

Pictorially, the defined ordering on a tree decreases when we go from a child

to a parent, or we go “left” in the tree, but otherwise increases. In Figure 9.1, for

example here is the order with respect to ≺ on the following nodes ⟨1 ⟩ ≺ ⟨1 , 1 ⟩ ≺
⟨1 ⟩ ≺ ⟨2 , 2 ⟩.

Example 6. In Fig. 9.1, we show a ( , { , , })-colourful tree, where represents

the dummy colour. For a fixed ordering on the set of colours < < < , a

labelling of this tree over L = {1, 2} ⊆ N is the prefix closure of the set {⟨1 , 1 , 1 ⟩ ,
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⟨1 , 1 , 2 , 1 ⟩ , ⟨1 , 1 , 2 , 2 ⟩ , ⟨1 , 1 , 1 ⟩ , ⟨1 , 1 , 2 , 2 ⟩ , ⟨1 ⟩, ⟨2 , 2 ⟩, ⟨2 , 1 , 1 ,

1 ⟩, ⟨2 , 1 , 2 ⟩}.

9.2 Shape of a Rabin game

In this section, our aim is to understand the Rabin acceptance condition on games.

We define such acceptance conditions and provide a witness that we call a colourful

decomposition of a game in which Steven wins from all vertices. We further remark

that we can equivalently obtain a local witness called a Rabin measure for such

games.

Rabin game. Recall that a (c0, C)-colourful Rabin game G consists of

1. an arena of a (sink-free) directed graph (V,E),

2. a start vertex v0 ∈ V and

3. a partition of V into VS and VA, the vertices of two players, Steven and Audrey,

respectively.

4. a finite set C of colours, and a special colour c0 ∉ C, and

5. for each vertex v ∈ V , a set of good colours Gv ⊆ C ∪ { c0 } for v and a set

Bv ⊆ C of bad colours for v.

Observe that c0 ∉ Bv for any v. We call a colour c in Gv a good colour for

v, and a colour in Bv a bad colour for v.

An infinite path in a Rabin game G satisfies the Rabin condition if there is

some colour c in C ∪ {c0} such that c is a good colour for some v seen infinitely

often along the path and c is not a bad colour for any v seen infinitely often along

the path.

Defined similar to parity games, a positional strategy σ for Steven for a Rabin

game G is a subset of edges outgoing from Steven’s set of vertices VS along with all

of Audrey’s edges in the game. We denote the graph restricted to a strategy σ for

Steven by G∣σ and it is defined as the Rabin graph over the same vertex set with a

new edge relation that consists exactly of the edges in σ.

We define the following parameters: n is the number of vertices, m is the

number of edges, and k = ∣C∪{c0} ∣ is the number of colours (also called the index ).
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Remark 6. Instead of Rabin condition usually described by pairs of subsets of ver-

tices associated to a colour, we talk about sets of colours associated to a vertex

instead. This is an equivalent representation in terms of size.

Colourful decomposition. We first define another extension of attractor decom-

positions, suitable for Rabin games, called colourful decompositions. These colourful

decompositions of a Rabin graph highlight a recursive structure that captures the

acceptance of all plays of Steven in a way that relates naturally to colourful trees.

Colourful decompositions generalise attractor decompositions defined in the prelim-

inaries Chapter 2 for parity games to Rabin games.

Consider a (c0, C)-colourful Rabin game G whose arena is the graph (V,E),
and whose good and bad colours are denoted by Gv and Bv respectively. A (c0, C)-
colourful decomposition D of G is a recursive sub-division of vertices V into subsets

of vertices defined as follows. If C = ∅, then we say D = ⟨V ⟩ is a (c0, C)-colourful

decomposition if V is the Steven attractor to the set containing all vertices v such

that c0 ∈ Gv. Else, if C ≠ ∅, then we say

D = ⟨A, (c1, V1,D1, A1) , . . . , (cj , Vj ,Dj , Aj)⟩

satisfies the following conditions:

1. A is the Steven attractor in the game G to the set of vertices v such that

c0 ∈ Gv;

and setting G1 = V \A. For i ∈ {1, . . . , j}, we have

2. Vi is a trap for Audrey in Gi in which the colour ci ∉ Bv for all v ∈ Vi;

3. Di is a (ci, C \ {ci})-colourful decomposition of the subgame G ∩ Vi;

4. Ai is the Steven attractor to Vi in Gi;

5. Gi+1 = Gi \Ai;

and we have Gj+1 = ∅.

We encourage the reader to refer to the corresponding definition of an at-

tractor decomposition of a parity game given in the preliminaries. The definitions of

attractor and trap are as defined for parity games in the preliminaries of the thesis.

Rabin measure. The Rabin measure, as with other progress measures, is based

exclusively on local properties. This renders it perfect for creating algorithms to
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solve these games. Indeed, we have a progress measure when each edge satisfies

certain conditions. We fix a (c0, C)-colourful Rabin game G with the underlying

graph (V,E) with good colours for a vertex v denoted by Gv and the bad colours

Bv. Let L be a linearly ordered set of labels, and let L be a L-labelled (c0, C)-
colourful tree. We define L⊤ = L ∪ {⊤} by adjoining an element ⊤ to L and we

extend the ordering ≺ to L⊤, by declaring ⊤ to be greater than all nodes in the

labelled colourful tree L.

Consider a map µ ∶ V → L⊤. We call an edge u→ v consistent with respect

to µ, if either µ(u) is assigned to ⊤ or it satisfies conditions (G≻ OR G↓) AND

B defined below.

• if G≻, then µ(v) ≺ µ(u);

• if G↓, then GCA(µ(u), µ(v)) = µ(u) and colour(µ(u)) ∈ Gu;

• if B, then ColourSet(µ(u)) ∩Bu = ∅

In words, G≻ conveys that the measure µ decreases along the edge u→ v and G↓ says

that the measure can increase to a descendent node but only when the colour of the

node that is currently mapped to is a good colour for u. B says that none of the

colours mapped to any ancestor of u is a bad colour for it.

If the map µ is clear from the context, we call an edge or a vertex consistent

without mentioning the mapping. We say that the relation and function GCA(⋅,⊤)
and colour(⊤) are undefined, and the condition G↓ or B are not satisfied when µ(v)
is assigned to ⊤ and µ(u) is not assigned to ⊤.

We say that the map µ is a (c0, C)-colourful Rabin measure for a game G if

for Audrey’s vertices, all edges outgoing from it are consistent, and there is at least

one edge from each Steven vertex that is consistent with respect to µ.

Progress measures are values assigned to a state that denote how close this

state is to satisfying a specific property [Kla90, KK91, Var96]. We provide a progress

measure for Rabin games, from the work of Klarlund and Kozen [KK91], where they

also provide a similar measure for Rabin graphs (equivalent to Rabin games when

Audrey owns all vertices). Our definition of a Rabin measure combines the ideas of

Klarlund and Kozen [KK91] as well as Jurdzinski and Lazic [JL17], following recent

approaches to faster algorithms for parity games discussed extensively in Parts I

and II of this thesis.

The crux of this section is Theorem 9.2.1 below which shows the equivalence

between a Rabin measure, a colourful decomposition, and a Rabin game where

Steven can win from all vertices.
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(a) A ( , { , , })-colourful Rabin game G
(b) A ( , { , , })-colourful Decomposition
of G

Figure 9.2: A Rabin game and its decomposition

Theorem 9.2.1. The following three statements are equivalent.

1. Steven wins from all vertices in a (c0, C)-colourful Rabin graph G.

2. There is a (c0, C)-colourful decomposition D of the vertices of G.

3. There is an L-labelled (c0, C)-colourful Rabin measure for G, where no vertex

is mapped to ⊤ for some linearly ordered infinite set L.

The theorem above is proved by showing (1⟹ 2) in Lemma 9.2.2, (2⟹ 3)

in Lemma 9.2.3 and finally (3⟹ 1) in Lemma 9.2.6.

Example 7. Consider the ( , { , , })-colourful Rabin game in Fig. 9.2(a) and its

( , { , , })-colourful decomposition in Fig. 9.2(b). The colours that are in the good

set of each vertex are represented with a smiley face and those that are bad colours

appear with a sad face. So, the leftmost vertex in the game G as in Fig. 9.2(a),

has the singleton set { } as the set of good colours and the set { } as the set of bad

colours, whereas the topmost vertex in Fig. 9.2(a) has { } as the set of good colours

and an empty set of bad colours. Steven wins fom all vertices in this game, and a

positional strategy is highlighted in the same figure where the edges not in the strategy

are dashed and grey. The decomposition of G in Fig. 9.2(b) can be represented as

D = ⟨A, ( , V1,D1, A1) , ( , V2,D2, A2)⟩ ,

where the corresponding sets of vertices are represented in the picture, D1 is a ( ,∅)-

decomposition of the subgame induced by V1, and D2 is a ( , { , })decomposition by

a subgame induced by V2.
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(a) A ( , { , , })-Colourful decomposition
of a Rabin game G

0
1

0

2
2

1

1

(b) An N-labelled ( , { , , })-colourful tree
into which the game has a Rabin measure.

Figure 9.3: A colourful decomposition and tree for Rabin measure

For the same game, we describe a Rabin measure µ obtained from the de-

composition into the tree in Fig. 9.3(b), where the decomposition is reproduced in

Fig. 9.3(a) next to the game for ease of reference. The only vertex with colour as

a good colour is assigned by µ to the root ⟨⟩. The other vertex in A is assigned by

µ to the first child of the root node in the tree ⟨0 ⟩. All vertices in V1 are assigned

by µ to one of the two nodes ⟨1 ⟩ or ⟨1 , 0 ⟩. The vertices in V2 are assigned to

the subtree rooted at colour , to one of the nodes ⟨2 ⟩, or ⟨2 , 1 ⟩ or ⟨2 , 1 , 1 ⟩
depending on the colour which is a good colour of the vertex. Finally, the vertex in

A2 \ V2 is assigned by µ to the last child of the root ⟨2 ⟩.

Lemma 9.2.2. Let G be (c0, C)-colourful Rabin game where Steven wins from all

vertices, then there is a (c0, C)-colourful decomposition of G.

Proof. We construct such a decomposition, by inducting on ∣C∣ and the number of

vertices in G.

Base case. If C = ∅, then the set of bad colours for each vertex is empty, that

is, for all vertices v, the set Bv = ∅. Observe also that the attractor to the set

B consisting of vertices v in the game such that Gv = {c0}, is the entire game V .

This is because the complement of a Steven Attractor is a trap for him. If therefore

there are any vertices other than the attractor to B, Audrey can ensure that the

play stays there and never visits a vertex v such that Gv = {c0}. Therefore, the

(c0,∅)-colourful decomposition is just ⟨V ⟩.
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Induction hypothesis. Let G be a (c0, C)-colourful Rabin games G where Steven

wins from everywhere and either ∣C∣ < k or if there are strictly fewer than n vertices.

Then G has a (c0, C)-colourful decomposition

D = ⟨A, (c1, V1,D1, A1) , . . . , (cj , Vj ,Dj , Aj)⟩

where c0 ∉ Bv for all v ∈ V , and for all v ∈ V , if c0 ∈ Gv then v ∈ A.

Induction step. Suppose that ∣C∣ = k, there are n vertices, and the induction

hypothesis holds. Consider all vertices B = {v ∣ c0 ∈ Gv}, and let A be the Steven

attractor to the set B of vertices. The subgame G1 induced by V \ A is a trap for

Steven, and therefore he must win from any vertex in the subgame restricted to G1.

Moreover, observe that there are no vertices v such that c0 ∈ Gv or c0 ∈ Bv for

v ∈ G1.

Fix a Steven strategy that is winning for him in G1. Consider an SCC

decomposition of the graph induced by the vertices of G1 using only the strategy

edges for Steven, and all edges of Audrey. Consider a bottom SCC (an SCC from

which there is no path to other SCCs) V1 of the graph induced by V \A. Consider

a path π such that the set of all vertices visited by π infinitely often is exactly V1.

This path satisfies the Rabin condition, which implies that there is some colour c1

such that c1 ∉ Bv for all v ∈ V1 and c1 ∈ Gv for some v ∈ V1.

Therefore, by induction, there is a (c1, C \ {c1})-colourful decomposition of

V1, say D1. Let A1 denote the Steven attractor to V1 in the subgame G1.

Now consider the game G2 = G1 \ A1, which has fewer vertices. We know

again that G2 is a trap for Steven in G. Moreover, there are no vertices v such that

c0 ∈ Gv or c0 ∈ Bv for v ∈ G2, there must be a (c0, C)-colourful decomposition.

Let this decomposition be:

D′
= ⟨∅, (c2, V2,D2, A2) , . . . , (cj , Vj ,Dj , Aj)⟩ .

The first set of vertices is ∅ by induction hypothesis since there are no vertices v

where c0 is a good colour or a bad colour of v. We claim that

D = ⟨A, (c1, V1,D1, A1) , (c2, V2,D2, A2) , . . . , (cj , Vj ,Dj , Aj)⟩

thus constructed from the sets defined above is a (c0, C)-colourful decomposition.

It is routine to verify that it satisfies all the properties of a decomposition by con-

struction.
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Figure 9.4: If C ≠ ∅ and n = 5

Lemma 9.2.3. Given a (c0, C) colourful Rabin graph G on which we have a

(c0, C)-colourful decomposition D, there is a L-labelled (c0, C)-colourful tree with

Rabin measure for G, where no vertex is mapped to ⊤.

Proof of Lemma 9.2.3. The following is proved by induction on the size of C. Given

a decomposition, we inductively obtain a tree and a corresponding mapping into the

tree. We modify both the tree and Rabin measure thus obtained from the recursively

defined decompositions and then merge them together. We later prove that indeed

such a mapping defined is a Rabin measure.

Before we proceed, we define the Steven attractor length. For each vertex

u, we say the Steven attractor length to a set B is t if t is the smallest number of

steps such that Steven can ensure within t steps he can visit a vertex in B. Observe

that all vertices in B have have attractor length 0, and the attractor length of any

vertex in the Steven attractor to B is finite and at most n − 1.

Suppose C = ∅. The (c0,∅)-colourful decomposition D = ⟨V ⟩. The set of ver-

tices V is exactly the Steven attractor to the set B consisting of all vertices v such

that c0 ∈ Gv. We consider an L-labelled (c0, C)-colourful tree obtained from L,

a tree with at most n − 1 nodes, all coloured ⊥ other than the root c0. More

formally, it is the prefix closure L of the set of leaves {⟨α1⊥⟩ , . . . , ⟨αt⊥⟩}, where

α1 < α2 < ⋅ ⋅ ⋅ < αt, each αi is an element of N. A picture of this tree is in Fig. 9.4

All vertices v ∈ B are mapped to the empty sequence denoted by ⟨⟩. For

all vertices v ∉ B, we define µ to be the i
th

child of the root ⟨αi⊥⟩, where i is the

Steven attractor length of v to B. Such a mapping µ has Bv = ∅ for all v, all the

edges satisfies B trivially.

Now we consider all edges that would be used by Steven in the attractor

strategy, along with all of Audrey’s edges. We now show that such an edge u → v

satisfies G≻ or G↓. Notice that if c0 ∈ Gu, i.e, u ∈ B, then edge u → v satisfies G↓.

Else, µ(u) ≻ µ(v), since it must be the case that the Steven attractor distance to B

from u is at least one more than this distance from v (this is an edge in the strategy

graph). Therefore if µ(u) = ⟨αj⊥⟩ and µ(v) = ⟨αi⊥⟩, then αj > αi and therefore

µ(u) ≻ µ(v).
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Suppose C ≠ ∅. We have a (c0, C)-colourful decomposition D, where

D = ⟨A, (c1, V1,D1, A1), . . . , (cj , Vj ,Dj , Aj)⟩ .

Then for each Vi, since it has a (ci, C \ {ci})-colourful decomposition, by induction,

we have a mapping µi to an L-labelled (ci, C \ {ci})-colourful tree Li.
We give a Rabin measure µ into the labelled colouuful tree T below

{ ⟨α0
1⊥⟩ , . . . , ⟨α0

t⊥⟩ }
j

⋃
i=1

{αi0ci ⊙ Li, ⟨αi1⊥⟩ , . . . , ⟨αit⊥⟩ }

where α
i
` are elements from L such that α

i1
` < α

i2
`′

if i1 < i2 and α
i
`1 < α

i
`2 if `1 < `2.

The tree is such that we add in order, t = n − 1 many children coloured with ⊥ to

the root followed by the recursively obtained (ci, Ci)-colourful tree Li to the root for

each i. A picture of the tree is given in Fig. 9.5 where the pink and the blue triangles

represent the trees obtained recursively. We define µ(u) from a decomposition D
above as follows.

Figure 9.5: Suppose C ≠ ∅

• If u ∈ A and c0 ∈ Gu, then µ(u) = ⟨⟩.

• If u ∈ A \ {v ∈ A ∣ c0 ∈ Gv}, we define µ(u) = ⟨α0
`⊥⟩ where ` is the attractor

length from u to the set consisting of all vertices v such that c0 ∈ Gv.

• For vertices u ∈ Vi, we define µ(u) = αi0ci ⊙ µi(u).

• For vertices u ∈ Ai\Vi, we define µ(u) = ⟨αi`⊥⟩ where ` is the Steven attractor

length from u to Vi in Gi.

We show that the µ defined above satisfies the conditions required for it to

be a Rabin measure by instead showing that each edge in the graph G is consistent.

First, we make the following observation about the defined mapping. For the rest

of the proof, we sometimes write A0 to also mean A and let V0 represent the set
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{v ∈ A ∣ c0 ∈ Gv}. Let Gi be defined similarly to the definition of a decomposition,

where G1 = V \A, and Gi+1 = Gi \Ai. Furthermore, we define G0 as the game G.

(∗) For i ∈ {0, 1, . . . , j}, any vertex in u ∈ V \Gi is such that µ(u) ≺ µ(v)
for all v ∈ Gi.

Moreover, we fix a Steven attractor strategy in each Ai, restrict Steven to only this

strategy edges from his vertices and argue that all such edges are consistent, to

argue that µ is consistent.

• If u ∈ A and c0 ∈ Gu, since µ(u) = ⟨⟩, for such a vertex any edge u→ v satisfies

G↓, since the root is coloured with c0, and also satisfies B since c0 ∉ Bu.

• If u ∈ A and c0 ∉ Gu, then µ(u) = ⟨α0
`⊥⟩, where ` is the length such that u

is in the ` is the Steven attractor length. Therefore, neighbours in the game

restricted to the Steven attractor strategy, must be assigned to α
0
`1 where

`1 < `.

• If u ∈ Ai \ Vi, for i ∈ {0, 1, . . . , j}, and suppose µ(u) = ⟨αi`⊥⟩ we show that

edges from u satisfies G≻.

– If v ∈ V \ Gi, then edge u → v satisfies G≻ from (∗), as all vertices in

V \ Gi are mapped to a node strictly smaller than µ(u) already.

– If v ∈ Ai, all paths using the Steven attractor strategy Ai in Gi (as defined

in the definition of a decomposition) leads to a vertex in Vi.

– If v ∈ Vi then by definition it is mapped to a descendent of α
i
0 and is

therefore assigned to a value smaller than ⟨αi`⊥⟩, and satisfies G≻. If not,

then v is a neighbour of u in Ai \ Vi and must have its Steven attractor

distance (to Vi in Gi) to be strictly smaller than that from u.

Therefore for any neighbour v, from our assignment of µ, it must be the case

that µ(v) = ⟨αi`1⊥⟩, where ` > `1, and hence µ(u) ≻ µ(v). Observe that all

edges from u also satisfies B because the only ancestor of µ(u) is ⟨⟩, and is

coloured with c0 and c0 ∉ Bv for any v, and therefore specifically c0 ∉ Bu.

• If u ∈ Vi for i ∈ {1, . . . , j}, for all edges u → v, v is either in Vi or in V \ Gi
since there are no paths using the Steven strategy fixed from Vi to Gi \ Vi (Vi

is a trap for Audrey in Gi). If v ∈ V \ Gi, we know µ(u) ≻ µ(v) from (∗), and

thus G≻ is satisfied. On the other hand if v ∈ Vi, then µi(u) and µi(v) are

both defined. If edge u → v satisfies G↓ with respect to µi, then it continues

to be satisfied in µ since colour(µ(u)) = colour(µi(u)). Otherwise, the edge
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u→ v satisfies G≻ in µi, i.e. µi(u) ≻ µi(v). Then µ(u) ≻ µ(v) since µ appends

the same value to the beginning of µi(u) and µi(v). Thus, G≻ is satisfied with

respect to µ.

Observe that ColourSet(µ(u)) = ColourSet(µi(u)) ∪ {ci}. Also, notice that

from the definition of a decomposition ci ∉ Bu for any u ∈ Vi. So, if

ColourSet(µi(u)) ∩ Bu = ∅, then Bu ∩ ColourSet(µ(u)) = ∅. Thus, B is

also satisfied by edge u→ v.

For the proof of Lemma 9.2.6 which would show how a Rabin measure serves

as a witness that all infinite paths in a Rabin graph satisfy the Rabin condition,

we require the following two simple facts on trees. These hold in general for all

ordered trees and not just colourful ordered trees. First one in Proposition 9.2.4

says that among two nodes in a tree, any ancestor of the larger node is always either

an ancestor of a smaller node or is also larger than the smaller node. The latter

proposition is about an infinite sequence of nodes in a tree where two consecutive

nodes satisfy some given properties.

Proposition 9.2.4. Any ancestor t of t
′

is such that for any other node t
′′
≺ t

′
,

either t is an ancestor of t
′′

or t is strictly larger than t
′′
.

Proposition 9.2.5 (Lemma 1, [KK91]). Consider an infinite sequence ρ of nodes

from L, an L-labelled (c0, C)-colourful tree, where ρ = t0, t1, . . . , ti, . . . . Suppose for

all j ∈ N, if

(i) either tj ≻ tj+1 or

(ii) tj is an ancestor of tj+1

then the smallest element of the sequence, denoted by tinf must be

1. the largest common ancestor of ti and ti+1 infinitely often

2. an ancestor of all but finitely many tis.

Proof. Let p be the position after which all tk such that k > p are such that tk ∈

Inf(ρ). Without loss of generality, assume tp = tmin. Clearly, tp+1 ⪰ tp, since it is

the smallest among inf{ρ}.

1. We recall that tp ≻ tp+1 or tp is an ancestor of tp+1. And we can conclude that

tp is an ancestor of tp+1. Since after position p, each element occurs infinitely

many times, we have that tmin is the largest common ancestor of tmin and all

its occurrences ti and its successors ti+1.
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2. We also argue that tmin is an ancestor of all tj for j ⩾ p. Let the next occurrence

of tmin in ρ be at tq, where q > p. We will show that for all p ⩽ j ⩽ q, tmin is

an ancestor of tj , or equivalently that tp is an ancestor of tj . Indeed, consider

tp, tp+1, . . . , tq.

We show tp = GCA(tp, tp) = GCA(tp, tp+1) = ⋅ ⋅ ⋅ = GCA(tp, tq) = tp. We

proceed by induction. In the base case, trivially tp is an ancestor of tp. We

assume as the induction hypothesis that tp is an ancestor of tp+i. We know

that tp+i and tp+i+1 satisfy either tp+i ≻ tp+i+1 or tp+i is an ancestor of tp+i+1.

In the latter case tp+i is an ancestor of tp+i+1. By the induction hypothesis

we have that tp is an ancestor of tp+i. Therefore, we conclude that tp is an

ancestor of tp+i+1.

In the former case, we invoke Proposition 9.2.4 with t ∶= tp, t
′ ∶= tp+i and

t
′′ ∶= tp+i+1. We consequently get either tp+i+1 ≺ tp or tp is an ancestor of

tp+i+1. Since tp = tmin, this gives us tp is an ancestor of tp+i+1 concluding our

claim.

Lemma 9.2.6. If there is an L-labelled (c0, C)-colourful Rabin measure for a

(c0, C)-colourful Rabin graph G and no vertex is mapped to ⊤, then the game is

winning from all vertices.

Proof. Let the Steven strategy consist exactly of the edges that are consistent with

respect to µ from V to the (c0, C)-colourful tree L. Consider an infinite path

π = v0 → v1 → ⋅ ⋅ ⋅ → vj → . . . in G. We define the infinite sequence µ(π) =

µ(v0), µ(v1), . . . , µ(vj), . . ., obtained by taking the image of the run by µ on the

colourful tree. In this colourful tree, consider t to be the smallest element among the

elements of L that occur infinitely often in the sequence µ(π), and let c = colour(t).
For such a t, we show

1. t is not coloured with ⊥;

2. c ∈ Gv, for infinitely many v in π, and

3. c ∉ Bv for each v occurring after some finite prefix in π,

to conclude that π is satisfies the Rabin condition. Before we begin the rest we first

remark that from conditions G≻ or G↓, we get that (vj , vj+1) is such that either one

of the following is true, either µ(vj) ≻ µ(vj+1), or µ(vj) = GCA(µ(vj), µ(vj+1)).
Therefore, t, defined as the minimum element that occurs infinitely often

in the sequence µ(π) must be the greatest common ancestor of µ(vi) and µ(vi+1)
infinitely often. Moreover, it must be a common ancestor of µ(vj) for almost all j.
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To show 1 consider a vertex vi, and (vi, vi+1) which occurs infinitely often in

the play π for which µ(vi) = t and also where the edge is consistent. This especially

means that this edge satisfies condition G≻ or G↓. If vi is coloured with ⊥, this edge

can only satisfy G≻, and hence µ(vi) ≻ µ(vi+1), a contradiction to the assumption

that µ(vi) = min inf(µ(π)).
Item 2, which claims that c ∈ Gv infinitely often for vertices from the play

π also follows from the above conditions as edge (vi, vi+1) identified in the above

condition should satisfy G↓infinitely often where µ(vi) = t.
Finally, we show Item 3 that c ∉ Bv for any v after some finite prefix of

π. This is because for any (vj , vj+1), where we have c ∉ ColourSet(µ(vj)) from

condition B. Since we had earlier observed that t is a common ancestor of µ(vj) for

all but finitely many of the edges (vj , vj+1) in π, we must have c ∉ Bvj for all but

finitely many vjs.

Remark 7. A similar statement to the equivalence of item 1 and 2 has been proved

in the work of Klarlund and Kozen [KK91] for the restricted setting of Rabin graphs,

however, a reader familiar with their work might have observed some differences in

the definition of a measure. Our definition of colourful trees is more restrictive

than theirs. For instance, colourful trees in the work of Klarlund and Kozen have

no restrictions about the colours along a path in a tree, i.e, in their definition, the

trees can have the same colour along a path and in fact only a partial colouring is

required. However, an examination of their proof reveals that in the direction of

the proof where they construct a Rabin measure, they inherently use a construction

which produces a mapping into colourful trees as we have defined and therefore, it

is enough to only consider such trees. We make this explicit and have proved it to

suit our situation.

9.3 Lifting algorithm for Rabin games

We wish to utilise the characterisation of Rabin games in terms of colourful decom-

positions and Rabin measures that map vertices to colourful trees to produce faster

algorithms. We first provide an algorithm, that given a (c0, C)-Rabin game decides

if this game has a Rabin measure into a fixed (c0, C)-colourful tree. This algorithm

is a lifting algorithm that keeps track of an underlying map from the vertices to

a labelled colourful tree and then repeatedly modifies this map until it obtains a

Rabin measure. The running time of our algorithm is given in terms of the time it

takes to navigate such a tree, but later in Section 9.4, we show the exact values of

tree that are constructed to solve required to solve Rabin games.
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A reader familiar with the work of Colcombet, Fijalkow, Gawrychowski, and

Ohlmann [CFGO22] as well as our charecterisation can deduce that colourful trees

form what are known as a “universal graph” of a Rabin game. Moreover, Colcom-

bet, Fijalkow, Gawrychowski, and Ohlmann [CFGO22] show that if such a universal

graph exists, then one can also construct a (progress measure) lifting algorithm that

runs in time that is linear in the size of a colourful tree into which we have a Rabin

measure for the game. However, implementing such an algorithm is non-trivial,

as the proof of space requirements makes certain assumptions on the underlying

model. We hope that our description provided here makes any future implementa-

tion straightforward, and this serves as a quick resource for such endeavours.

We describe an algorithm that identifies if a Rabin game G is winning for

Steven, using Rabin measures defined earlier for Rabin graphs. Towards this goal,

we define monotonic, inflationary operators on the set of all maps from vertices of

a game to a tree such that the simultaneous fixpoints of these operators exactly

correspond to a Rabin measure.

Consider a Rabin measure µ which is a function mapping the vertices V of

a (c0, C)-colourful Rabin game G into an L-labelled (c0, C)-colourful tree L. We

define a function liftµ, which maps edges E of the arena of the game to L⊤. For an

edge u → v of G, we define liftµ(u, v) to be the smallest element t in L⊤ such that

t ⪰ µ(u) and edge u → v is consistent with respect to the mapping µ[u ∶= t]. We

use the notation µ[u ∶= t] to indicate the mapping µ
′

where µ
′(x) = µ(x) if x ≠ u

and µ
′(x) = t if x = u.

For each vertex v, we define an operator Liftv on the lattice of all maps from

V to L⊤. The operator Liftv only modifies an input map µ at v and nowhere else.

We define

Liftv(µ)(u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µ(u) for u ≠ v

min(v,w)∈E {liftµ(v, w)} if u = v ∈ Vc

max(v,w)∈E {liftµ(v, w)} if u = v ∈ Ve.

Proposition 9.3.1. The function Liftv is monotone for each v.

Proof. We show that for two measures µ1 ⪯ µ2, Liftv(µ1) ⊑ Liftv(µ2). Note that

it suffices to show that for Steven’s (resp. Audrey’s) vertices v, the value t1 =

minv→w{liftµ1(v, w)} is at most as large as t2 = minv→w{liftµ2(v, w)} (using max

for Audrey instead). Instead, we argue that µ
′
1, defined as µ1[v ∶= t2] ensures that

the vertex v is consistent. Let v → w be the edge that is consistent in µ
′
2 = Liftv(µ2).

We claim that the same edge(s) v → w is still consistent in µ
′
1.
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• If v → w satisfied G≻ with respect to µ
′
2, then it continues to satisfy G≻ with

respect to µ
′
1, since µ

′
1(v) = µ′2(v) ≻ µ2(w) ⪰ µ′1(w).

• If v → w satisfied G↓ with respect to µ
′
2, then it either continues to satisfy

G↓, or satisfies G≻ with respect to µ
′
2. To see this, we observe that µ

′
2(v) is

an ancestor of µ
′
2(w) = µ2(w), and µ

′
2(w) ⪰ µ

′
1(w). From Proposition 9.2.4,

we consequently get µ
′
1(v) ≻ µ′1(w) or µ1(v) is an ancestor of µ

′
1(w), which is

exactly G≻ or G↓respectively.

• If u→ v satisfied B with respect to µ
′
2, then it continues to satisfy B with re-

spect to µ
′
1, since µ

′
2(v) = µ′1(v) and ColourSet(µ(u))∩Bu = ColourSet(µ1(u))∩

Bu = ∅.

We know that each Liftv is inflationary and monotone. Therefore, the simul-

taneous least fixpoint of Liftv on the map µ, which maps all vertices to the root

of L exists (from the Knaster-Tarski theorem [Tar55]). We can moreover state the

following proposition that such fixpoints correspond to the Rabin measures, which

almost follows from our definitions.

Proposition 9.3.2. For a (c0, C)-colourful Rabin game G where the vertex set is

V and a fixed L-labelled (c0, C)-colourful tree L,

• any simultaneous fixpoint of the set of functions Liftv for all v ∈ V is a Rabin

measure;

• any Rabin measure is a simultaneous fixpoint of Liftv for all v ∈ V .

Our algorithm, like any other progress-measure algorithm, computes this si-

multaneous fixpoint of Lift as follows, the correctness of which follows from Propo-

sitions 9.3.1 and 9.3.2.

Algorithm 10 The lifting algorithm on game (c0, C)-colourful Rabin game G with
vertices V to tree L
1: Initialise: For each v ∈ V , µ(v) is declared to be root in L
2: while there is some vertex v that is inconsistent with respect to µ. do
3: µ← Liftv(µ).
4: end while
5: return µ

Remark 8. If there is (c0, C)-colourful Rabin game G and a L-labelled (c0, C)-

colourful tree L′, such that there is a Rabin measure µ
′

from V to L′, and L embeds

L′, then there is also Rabin measure µ to L. All the elements that are not mapped

to ⊤ by µ
′

are still not mapped to ⊤ by µ.
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Running time complexity. For a finer analysis of the runtime, we need to

understand the size of the lattice where the lifting algorithm takes place. However, in

this section, we restrict ourselves to analysing the running time of our algorithm for

a fixed tree L, whose size is denoted by ∣L∣. Additionally, we report our runtimes in

the form of operations performed to navigate the underlying tree L. In Section 9.4,

we construct sufficiently large colourful trees that can solve Rabin games of a fixed

number of vertices and colours and expand on the time and space complexity of

these operations on these constructed trees.

Lemma 9.3.3. Given a mapping from the vertices of an n-vertex (c0, C)-colourful

Rabin game G to a L-labelled (c0, C)-colourful tree L, the value of Liftv(µ)(v) can

be computed in time proportional to O(deg(v) ⋅ Tnext), where deg(v) is the degree

(number of outgoing edges) of v and Tnext is defined as the maximum of

• the time taken to make a linear pass on a node in L;

• the time taken to compute the next node in L;

• given t ∈ L and C
′
⊆ C such that colour(t) ∈ C

′
, the time taken to find the

next node that uses colours only from C
′ ∪ {⊥}.

Proof. We first answer the following question: given an edge u→ v and a mapping

µ to L⊤, can we calculate liftµ(u, v) quickly?

We show how to define and compute liftµ(u, v) function using the following

subroutines:

• computing the next node, and

• computing the next node whose colour set contains colours only from C
′∪{⊥}

where the colouring of the given node is in C
′
⊆ C.

Henceforth, we denote the successor of node t in L⊤ with respect to the order ≺ by

next(t). A naive way to compute liftµ(u, v) would be to apply next to µ(u) and to

check each time if the edge u → v satisfies the consistency properties. But such an

algorithm would potentially take exponential time to compute some lift functions.

We remark however that this naive algorithm would only add a polynomial factor

to the upper bound to the worst-case complexity of our run-time after amortisation.

We will now give the function, which directly computes liftµ(u, v) using only

two primitives after a linear scan

(a) computing the next node in the tree;
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(b) computing the next node whose colour set contains colours only from C
′∪{⊥}

where the colouring of the given node is in C
′
⊆ C.

It can be inferred from the procedure described in the following paragraphs

that we need only finitely many linear passes on a node when represented as a

sequence of labels and colours.

Edge u→ v is already consistent. In this case, u→ v already satisfies at

least one of G≻ or G↓ along with (R) in µ. Hence liftµ(u, v) is set to µ(u), continues

to make u→ v consistent.

Edge u → v satisfies G≻ but not B. In this case, we only need to find

the smallest value larger than µ(u) whose colour set does not contain any colours

from Bu. Let µ(u) = ⟨α1ci1 , . . . , αmcim⟩ where αi ∈ L. We achieve this by finding

the largest position s that gives ColourSet(⟨α1ci1 , . . . , αscis⟩) ∩ Bu = ∅. Then we

compute the smallest child t larger than the node above, t = ⟨α1ci1 , . . . , αs+1cis+1⟩
that gives ColourSet(t) ∩ Bu = ∅ and set liftµ(u, v) to t. The computation clearly

takes time at most Tnext.

Since µ(u) ≻ µ(v), liftµ(u, v) ≻ µ(u) and liftµ(u, v) doesn’t use any colours

from Bv, the edge u→ v satisfies G≻ and B in the new mapping.

Edge u → v satisfies G↓ but not G≻ or B. We again take µ(u) =

⟨α1ci1 , . . . , αmcim⟩. Since u → v satisfies G↓, we know that µ(u) is an ancestor of

µ(v). We argue that the smallest value larger than µ(u) that also satisfies B does

not satisfy G↓, but rather satisfies G≻. This is because there is an ancestor of µ(u)
(and thus, of µ(v)) that is coloured by a bad colour for u. Since liftµ(u, v) must be

larger than µ(u), it cannot be set to an ancestor of µ(u). Then, it should be set to a

larger sibling of one of the ancestors of µ(u). Since any larger sibling of an ancestor

of µ(v) is always larger than µ(v), the smallest value of liftµ(u, v) that makes u→ v

consistent satisfies G≻. We have therefore reduced this case to the previous one.

Edge u → v satisfies neither G≻, G↓ or B. Since the edge does not

satisfy G≻, we know µ(u) ⪯ µ(v). We go through the ancestors of µ(v) one by one

in increasing order to see if there exists one that is both strictly larger than µ(u),
and satisfies B. If there exists one, then we set liftµ(u, v) to the first such value

found, and u→ v satisfies G↓ and B in the new mapping. This computation takes a

linear scan through at most the length of µ(v). If none of the ancestors satisfy these

constraints, then we know that liftµ(u, v) has to be at least as large as next(µ(v)).
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Thus u → v has to satisfy G≻ and B in the next mapping. Once more, we have

reduced this case to the previous ones.

We have concluded that computing liftµ(v, w) takes time at most O(Tnext).
Recall the definition of Liftv by using liftµ(v, w) as a subroutine.

Liftv(µ)(u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µ(u) for u ≠ v

min(v,w)∈E {liftµ(v, w)} if u = v ∈ VS

max(v,w)∈E {liftµ(v, w)} if u = v ∈ VA

It is therefore easy to conclude that Liftv(µ)(v) takes time at most O(deg(v) ⋅ Tnext)

First, we observe that performing Liftv on the mapping strictly increases the

mapping for a vertex that has no consistent edges. Each operation of Liftv also

calls at most deg(v) many calls of liftµ(v, u) for some edge v → u. Suppose each

operation liftµ(v) takes time Tnext, to find the value of Liftv(µ)(v) takes time at

most deg(v) ⋅ Tnext. Since each non-trivial application of Liftv strictly increases the

value that v is mapped to, it can be called at most as many times as the number of

nodes in tree L, this ensures that the time taken is

∑
v∈V

deg(v)∣L∣ (Tnext) ∈ O(m∣L∣Tnext) .

We finally conclude this section with the following theorem.

Theorem 9.3.4. For a (c0, C)-colourful Rabin game G with n vertices and m

edges, and a L-labelled (c0, C)-colourful tree L, Algorithm 10 on game G with colour-

ful tree L returns the smallest Rabin measure to L⊤ in time O(m∣L∣Tnext) where

Tnext is as defined in Lemma 9.3.3 and ∣L∣ denotes the number of nodes in L.

9.4 Small colourful-universal trees

We observed that our algorithm from the previous section correctly identifies the

smallest Rabin measure into a fixed labelled colourful tree L. However, by Theo-

rem 9.2.1, we know that there exists an L-labelled (c0, C)-colourful tree L with at

most n leaves. Therefore, for a Rabin game, there is a Rabin measure into L⊤ where

all start vertices from which the game is winning for Steven are not mapped to ⊤.

To successfully determine the winner of all (c0, C)-colourful Rabin games with n

vertices, we need to ensure that the tree L used in Algorithm 10 would be able to
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embed all (c0, C)-colourful trees with n leaves. Since the running time is linearly

dependent on the size of the tree, smaller trees that satisfy the above property are

desirable.

We show how to construct universal colourful trees. We say that (c0, C)-
colourful n-universal trees are colourful trees that are large enough to embed any

(c0, C)-colourful L with n-nodes. We also modify previously discussed Jurdziński-

Lazić universal trees [JL17] to encode each node of these universal colourful trees

using space proportional to a O(k log k log n), which helps navigate these labelled

colourful trees efficiently.

Definition 9.4.1 (n-Universal (c0, C)-colourful tree). A (c0, C)-colourful tree U is

n-universal, if it embeds any (c0, C)-colourful tree T with at most n leaves.

We henceforth assume that C = {c1, . . . , ch}, with the fixed ordering c1 <

c2 < ⋅ ⋅ ⋅ < ch on the colours, and k = h + 1.

A straightforward approach to creating an n-universal (c0, C)-colourful tree

could involve combining all potential (c0, C)-colourful trees with no more than n

leaves and with the root colour c0, and concatenating them. Clearly, such a finite n-

Universal (c0, C)-colourful tree can be created as there are only finitely many such

trees up to isomorphism (for a fixed C and n). But of course, this tree is not

only large, but can also be difficult to navigate. An alternative, more manageable

approach is to construct a tree that branches n ⋅ ∣C∣ many times at the root. These

initial subtrees, resulting from this n ⋅ ∣C∣ branching, are rooted with n repeating

blocks of the h colours c1, c2, . . . , ch in order. For example, if h were 2, then the

colours of the children of the root would be, in that order, c1, c2, c1, c2, . . . , c1, c2.

Each of the children in turn branches into n ⋅ (∣C∣−1) many times recursively. This

creates a tree of size bounded by n
h
h!. Remarkably, this very tree (whose nodes

are represented as tuples) serves as the underlying structure that underpins the

algorithm devised by Piterman and Pnueli [PP06] which led to their O(mnk+1kk!)
algorithm.

In the subsequent text, we give a more involved construction—inspired by

the Jurdziński-Lazić universal trees—of a significantly smaller universal tree. In

our construction, we inductively describe such a (c0, C)-colourful n-universal tree,

which we call U `(c0,C), for all n ⩽ 2
`
.

• if C = ∅, then there is exactly one tree to embed, and therefore

U `(c0,C) = (c0, ⟨(⊥, ⟨⟩)2
`

⟩)
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• if ` = 0, then the tree to be embedded has exactly one leaf and therefore, for

each colour ci in C, we have a child of colour ci which hosts a subtree rooted

at ci. This is defined inductively as

U0
(c0,C) = (c0, ⟨U0

(c1,C1), . . . ,U
0
(ch,Ch), (⊥, ⟨⟩)⟩)

where Ci is C \ {ci}.

• if C ≠ ∅ and ` > 0, then we define the coloured tree to be two copies of

an n/2-universal tree, and ∣C∣ many copies of the n-universal tree where one

colour is dropped each time. More formally,

U `(c0,C) = U `−1(c0,C) ⋅ (c0, ⟨U
`
(c1,C1), . . . ,U

`
(ch,Ch), (⊥, ⟨⟩)⟩) ⋅ U

`−1
(c0,C).

In Fig. 9.6, we demonstrate how the inductive construction is done if c0 = and

the set of colours is C = { , , }. To the left and right are the ( , C)-colorful

n/2-universal trees and between them, there are ∣C∣ many n-universal trees each of

which uses one fewer colour and one node with just the dummy colour represented

there by .

U `−1( ,{ , , }) U `−1( ,{ , , })

U `( ,{ , }) U `( ,{ , }) U `( ,{ , })

Figure 9.6: Inductive construction of a colourful n-universal tree

Theorem 9.4.2. For C ≠ ∅, and k = ∣C∣ + 1, and ` = ⌈lg n⌉, the colourful tree

U `(c0,C) constructed is a (c0, C)-colourful n-universal tree with the number of leaves

no larger than

nk!(min{n2
k
,(` + kk − 1)}) .

Proof. Firstly, we show that U `(c0,C) is (c0, C)-colourful n-universal tree (in Proposi-

tion 9.4.3). Then we prove that U `(c0,C) has at most 2
k ⋅k! ⋅ 4` leaves in Lemma 9.4.4

and at most (`+k
k−1

) ⋅ 2` ⋅ k! leaves in Lemma 9.4.5, both proved by induction, leading

to the proof of our theorem.
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Proposition 9.4.3. The (c0, C)-colourful tree U `(c0,C), embeds any (c0, C)-colourful

tree with at most n leaves where ` ⩾ ⌈log n⌉.

Proof of Proposition 9.4.3. Consider any (c0, C)-colourful tree T with n leaves. The

statement is trivial if C = ∅, since from our construction, our tree is such that all

n leaves have colour ⊥. We assume C ≠ ∅ but ` = 0, and therefore n = 1. Let

C = {c1, . . . , ch}. In this case, we have

U0
(c0,C) = (c0, ⟨U0

(c1,C1), . . . ,U
0
(ch,Ch), (⊥, ⟨⟩)⟩)

We must either have T = (c0, ⟨Ti⟩) for some (ci, C \ {ci})-colourful tree Ti or al-

ternatively, T = ⟨(⊥, ⟨⟩)⟩, and clearly from the construction, it follows that this

tree can be embedded in U0
(c0,C), recursively, by choosing an appropriate subtree

(ci,U0
(ci,Ci)), and recursively embedding Ti in U0

(ci,Ci).

If we consider the case where n > 1 (and therefore ` > 0), and for this case,

let T = (c0, ⟨T1, . . . , Tm⟩). Let np represent the number of leaves of Tp. We know

∑np = n. For each p, we define

T<p = (c0, ⟨T1, . . . , Tp−1⟩) and T>p = (c0, ⟨Tp+1, . . . , Tm⟩) .

There must be at least one p for which both trees T<p as well as T>p have size

at most n/2. The existence of such a p can be shown by defining the summation

Nj = ∑j
i=1 ni which ranges from 0 to n as j ranges from 1 to m. Then there must

be some point where Nj exceeds n/2, giving us our desired p.

Since both T<p and T>p have at most n/2 leaves, by induction U `−1(c0,C) embeds

T<p as well as T>p, since C contains all the colours in T<p and T>p and each tree has

less than n/2 leaves. Furthermore, U `(cip ,Cip) embeds Tp, where cip is the colour of

the root of Tp and Cip = C \ {cip}. Observe that for each ci, there is a copy of the

tree of U `(ci,Ci), where Ci = C \ {ci}. Hence from the construction of U `(c0,C), the tree

T = T<p ⋅ (c0, ⟨Tp⟩) ⋅ T>p

can be embedded into

U `(c0,C) = U `−1(c0,C) ⋅ (c0, ⟨U
`
(c1,C1), . . . ,U

`
(ch,Ch), (⊥, ⟨⟩)⟩) ⋅ U

`−1
(c0,C).

Lemma 9.4.4. The tree U `(c0,C) has at most 2
k ⋅ k! ⋅ 4

`
many leaves where k =

∣C ∪ {c0}∣.

Proof. Let us denote by U(`, h), the number of leaves in the tree U `(c0,C) defined
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above, where ∣C∣ = h.

If k = 1, h = k − 1 = 0 then U(`, h) = 2
`

by construction.

If ` = 0, then we show by induction a stronger statement that U(0, h) ⩽ h!h

for all values of h ⩾ 1. Indeed,

U0
(c0,C) = (c0, ⟨U0

(c1,C1), . . . ,U
0
(ch,Ch), (⊥, ⟨⟩)⟩)

From this we can infer that

U(0, h) ⩽ (k − 1) ⋅ U(0, k − 1) + 1

Since we already know U(0, 1) = 1, inductively, we can show that

U(0, h) ⩽ h ⋅ U(0, h − 1) + 1 ⩽ h ⋅ ((h − 1)!) + 1 ⩽ h!h

For `, h > 0, recall that

U `(c0,C) = U `−1(c0,C) ⋅ (c0, ⟨U
`
(c1,C1), . . . ,U

`
(ch,Ch), (⊥, ⟨⟩)⟩) ⋅ U

`−1
(c0,C).

Therefore, we see that for `, h > 0, the following recurrence relation holds

U(`, h) = 2 ⋅ U(` − 1, h) + h ⋅ U(`, h − 1) + 1

We prove U(`, h) ⩽ 4
` ⋅ hh! ⋅ 2

h
, by induction.

For the base case, for the values U(0, h) and U(`, 0) are at most 4
` ⋅ hh! ⋅ 2h,

and therefore the inequality holds. We assume, for t < ` and j < h, that U(t, j) ⩽
4
t ⋅ 2

j ⋅ jj! as our induction hypothesis. For this ` and h, observe

U(`, h) = 2U(` − 1, h) + hU(`, h − 1) + 1

⩽ 2 ⋅ ((4)`−1 ⋅ 2
h
⋅ (h)!h) + h ⋅ (4

`
⋅ 2

h−1
⋅ h!) + 1

⩽
1

2
(4
`
⋅ 2

h
⋅ h!h) + h (4

`
⋅ 2

h−1
⋅ (h − 1)!(h − 1)) + (4

`
⋅ 2

h−1
⋅ (h)!)

=
1

2
(4
`
⋅ 2

h−1
⋅ h!h) + (4

`
⋅ 2

h−1
⋅ h!h)

=
1

2
(4
`
⋅ 2

h−1
⋅ h!h) + 1

2
⋅ (4

`
⋅ 2

h
⋅ h!h)

= 4
`
⋅ 2

h
⋅ (h)!h

Since h = k − 1, our claim follows.

Lemma 9.4.5. The tree U `(c0,C) has size at most (`+k
k−1

) ⋅2` ⋅k!, where k = ∣C∪{c0}∣.
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Proof. Let us again denote by U(`, h), the number of leaves in the tree U `(c0,C),

where ∣C∣ = h = k − 1.

If h = 0, then U(`, h) = 2
`

by construction, and therefore we have U(`, 0) =
(`+h+1

h
)h!2

`
.

If ` = 0, recall from the proof of Lemma 9.4.4 we show that U(0, h) ⩽ h!h

for all values of h ⩾ 0.

Now, suppose `, h > 0, then we have

U(`, h) = 2U(` − 1, h) + hU(`, h − 1) + 1

⩽ 2 ⋅ ((2)`−1 ⋅ (` + hh )(h)!h) + h ⋅ (2
`
⋅ (` + hh − 1)(h − 1)!(h − 1)) + 1

⩽ (2
`
⋅ (` + hh )(h)!h) + (2

`
⋅ (` + hh − 1)(h)!(h − 1)) + (2

`
⋅ (` + hh − 1)(h)!)

⩽ 2
`
⋅ h!h((` + hh ) + (` + hh − 1))

= 2
`
⋅ h!h(` + h + 1

h )

9.4.1 Lower bounds on the size of universal colourful trees

We show that our construction is near-optimal as we have a lower bound on the

size of n-universal (c0, C)-colourful trees, which is within a polynomial factor of the

upper bound.

Lemma 9.4.6 (Lower bound on universal colourful trees). Any n-universal (c0, C)-

colourful tree must have size at least (`+k−1
`

)(k−1)! where k = ∣C∣+1, and ` = ⌊log n⌋.

Proof. We first recall a theorem on the lower bound of (colourless) universal trees

by Czerwiński et al. [CDF
+

19], inspired by the lower bound results for trees by

Goldberg and Livshits [GL68].

Theorem 9.4.7 ([CDF
+

19], Theorem 2.3). For natural numbers n and h, every

(n, h)-universal tree has at least (⌊lgn⌋+h−1
h−1

) leaves.

To prove our results, we first fix a permutation of colours ci1 , . . . , cih and

consider any tree with n leaves where the order of colours from the root to the

leaf is exactly the same as the given permutation. We also require that the tree

be equitable, that is, all leaves have the same depth from the root. Then this

tree must have size at least the size of a 2
`
-universal tree of height h (defined for

ordered tree without colours). Such universal trees have size at least (`+h−1
h−1

) from
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Theorem 9.4.7. Then, for each choice of permutation, the universal tree restricted to

that permutation must have size (`+h−1
h−1

). Furthermore, two universal trees obtained

by fixing different permutations cannot share a leaf due to the distinct colours

assigned to the same ancestor of the leaf. Therefore, we get a lower bound of

(`+h−1
h−1

)h! on the size of (c0, C)-colourful n-universal trees.

Immediately, for k = ∣C∣ + 1, this gives us the bound (`+k−2
`

)(k − 1)!. This

closely matches one of the upper bound of our construction by at most a polynomial

factor in n and k.

Labelled universal colourful trees. Here, we give a labelling of a universal

colourful tree described in the previous section by giving an W-labelling of any

(c0, C)-colourful tree. Recall from Chapter 2 that the set W = { 0, 1 }∗ has a bit-

string ordering on W which is a total ordering. 0 < ε < 1 and for b1, b2 ∈ { 0, 1 } we

have b1 ⋅ w1 < b2 ⋅ w2 if and only if b1 < b2 or b1 = b2 and w1 < w2.

Any node in a W-labelled (c0, C)-colourful tree can be represented by a word

of the form below

t = { 0, 1 }∗ ci1 ⋅ { 0, 1 }∗ ci2 ⋅ . . . ⋅ { 0, 1 }∗ cim ,

where cij ≠ cik if i ≠ j and cij = ⊥ if and only if j = m. We call the number of 0s

and 1s occurring in t, the number of bits used to label t. We show in the following

lemma that it is possible to have a labelling of our universal colourful tree U `(c0,C)
such that the encoding of each node in it is “short”.

Lemma 9.4.8. There is a W-labelling of the tree U `(c0,C), denoted by L`C such that

the number of bits used to label any node of L`C is at most `.

Proof. We expand on the notation that we used in Chapter 5 in the construction

below to obtain a W-labelling of U `(c0,C), and recall some new notation.

• For b ∈ { 0, 1 } and each ωi ∈W ⋅ C, we define

[L ]b = {(b ⋅ ω1, ω2, . . . , ωm) ∣ (ω1, ω2, . . . , ωm) ∈ L}

In words, [L]b is the labelled ordered tree that is obtained from L by adding

an extra copy of bit b as the leading bit in the labels of all children of the root

of L.

• Recall that for a prefix closed set L and ω ∈ W ⋅ C, we define ω ⊙ L as the
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prefix-closure of the set

{(ω, ω1, ω2, . . . ωm) ∣ (ω1, ω2, . . . , ωm) ∈ L}

obtained by the addition of the term ω to the prefix of the tuples in L for each

tuple in the set L, and taking its prefix closure.

Consider the (c0, C)-colourful 2
`
-universal tree U `(c0,C).

• if ` = 0 and C = ∅, then clearly, L`C , defined as the empty tuple () and uses

no bits to label each node in the tree.

• if ` = 0 and C ≠ ∅, then we define L`C to be

⋃
i

(εci ⊙ L0
Ci
)

where each L0
Ci

is the recursively obtained labelling for U0
(ci,Ci). Observe that

no extra bits are used in addition to the bits used by each L0
Ci

. Since each

L0
Ci

uses 0 bits to label their nodes, L`C also uses 0 bits to label each node in

the tree. Also note that this set is prefix closed.

• if ` > 0 and C ≠ ∅ and recall that

U `(c0,C) = U `−1(c0,C) ⋅ (c0, ⟨U
`
(c1,C1), . . . ,U

`
(ch,Ch), (⊥, ⟨⟩)⟩) ⋅ U

`−1
(c0,C).

Let L`C be a labelling of U `(c0,C), defined as the prefix-closed set

[L`−1C ]
0
∪ ⋃

i

(εci)⊙ L`Ci
,∪ (ε⊥) ∪ [L`−1C ]

1

where L`−1C and L`Ci
are labellings of U `−1(c0,C) and U `(ci,Ci) respectively, and use

at most `−1 and ` bits to encode each of their nodes. Hence L`C as constructed

uses at most ` bits to encode each node.

Recall that we denoted the time taken to navigate this tree for the purposes

of our lifting algorithm as Tnext. We rigorously prove that this value Tnext for this

tree defined above is O(k log(k)`) where the tree uses k colours. Finally, we get our

main theorem of the section as stated below. We postpone the technical details of

the proof of the theorem to the end of this section.
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Theorem G. A winning strategy for Steven in a Rabin game with n vertices, m

edges, and k colours can found using O(nk log k log n) space and time

Õ (nm ⋅ k! min{n2
k
,(

⌈lg n⌉ + k
k − 1

)}) .

Proof. We know that the lifting Algorithm 10 for a (c0, C)-colourful tree finds the

Rabin measure into the tree L in time O(mn∣L∣Tnext).
For a game with n vertices, we instantiate the algorithm with L being the

W-labelling of the (c0, C)-colourful 2
`
-universal, tree the tree U `(c0,C) constructed,

where ` = ⌈lg(n)⌉. L therefore has at most (nk! min {n2
k
, (⌈lgn⌉+k

k−1
)}) many leaves

from Theorem 9.4.2, and hence at most k times as many nodes. Moreover, we show

that the time taken to navigate the tree Tnext is at most O(k` log k) in Lemma 9.4.9

and Proposition 9.4.10.

The following lemma proves the last piece required in the proof of our theo-

rem, by showing that one can navigate these trees quickly.

Lemma 9.4.9. Given a node in the W-labelled (c0, C)-colourful tree L`C , with

at most 2
`

leaves one can compute the next node larger than a given node in time

O(k log(k)`), where k = ∣{c0} ∪ C∣.

Proof. We first introduce, for a ∈ N, a function nextstring
a

that takes a string ω on

{0, 1}∗ with ∣ω∣ ⩽ a and calculates the smallest ω
′

with ∣ω′∣ ⩽ a that is larger than

ω, if it exists (with respect to the ordering on W).

For example, for a = 3, the succinct encoding gives us the following order:

000 < 00 < 001 < 0 < 010 < 01 < 011 < ε < 100 < 10 < 101 < 1 < 110 < 111

and the nextstring
a

function gives us exactly this ordering. That is for in-

stance, nextstring
3(0) = 010 and nextstring

3(011) = ε. Additionally, for a newly

introduced element  , we set nextstring
a(1a) ∶=  , for example, nextstring

3(111) =  .

Let ω ∈ {0, 1}∗ with ∣ω∣ ⩽ b. Then nextstring
a(ω) is computed as follows,

• If ∣ω∣ < a, then nextstring
a(ω) = ω10

a−1
,

• If ∣ω∣ = a,

– If ω = ω
′
01
k

for some ω
′

and k ⩾ 0, then nextstring
a(ω) = ω′,

– If ω = 1
a
, then nextstring

a(ω) =  .
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Next we define our desired function next
`
C(t) that takes a node of L`C and

sends it to the next node that is is larger than t, and contains colours from the set

C. If no such node exists, it sends it to ⊤.

We apply the following rules to calculate next
`
C(t) for some node t =

⟨ω1ci1 , . . . , ωmcim⟩:

• If cim ≠ ⊥, then t is not a leaf and therefore, next
`
C(t) is t’s smallest child.

next
`
C(t) = ⟨ω1ci1 , . . . , ωmcim , 0

a
c⟩ where c is the minimum colour in C

⊥ \
{ci1 , . . . , cim} and a = ` −∑m

i=1 ∣ωi∣.

• If cim = ⊥, then t is a leaf, therefore next
`
C(t) is the smallest sibling of t that is

larger than itself. Hence, next
`
C(t) = ⟨ω1ci1 , . . . , ωm−1cm−1, nextstring

a(ωm)c⟩
where c is the minimum colour in C

⊥ \ {ci1 , . . . , cim−1
} and a = `−∑m−1

i=1 ∣ωi∣.

Moreover, for ωj =  , we say

⟨w1ci1 , . . . , wj−1cij−1 , cij⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⟨ω1ci1 , . . . , ωj−1c⟩ if cij−1 ≠ ⊥,

⟨ω1ci1 , . . . , nextstring
a(ωj−1)c′⟩ if cij−1 = ⊥,

Note that both of these tuples are (j − 1)−tuples. Here, c is the smallest colour

larger than cij−1 in C
⊥ \{ci1 , . . . , cij−2}, c

′
is the minimum color in C \{ci1 , . . . , cj−2}

and a = ` −∑j−2
i=1 ∣wi∣.

The value  is assigned to the last entry of next
`
C(t) by the application of

rules presented above, only when t is the largest of its siblings. In this case, we

reassign next
`
C(t) to the smallest sibling of t’s parent that is larger than itself, as

given above. Similarly, if t = ( ⋅⊥), then t = ⊤, since L`C is out of nodes.

We conclude this detailed computation of next
`
C with the observation that

the above computation takes only time O(k log(k)`).

Proposition 9.4.10. Given a node t in the W-labelled (c0, C)-colourful tree L`C ,

with at most 2
`

leaves and K ⊆ C such that colour(t) ∈ K, the next node larger

than t such that ColourSet(t) ⊆ K ∪ {⊥} can be found in time O(k log(k)`), where

k = ∣C ∪ c0∣.

Proof. For any node t ∶= ⟨ω1ci1 , . . . , ωmcim⟩ we know cim ∈ K. We first find largest

position s, such that ColourSet (⟨ω1ci1 , . . . , ωscis⟩) ⊆ K.

We then compute the next node t
′
to ⟨ω1ci1 , . . . , ωs+1cis+1⟩ which also only has

colours from the set K, that is ColourSet(t′) ⊆ K. But for the tree L`C constructed,

consider the smallest colour c such that c is the smallest colour in (K ∪ {⊥}) \
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{ci1 , ci2 , . . . , cis} larger than cis+1 . Observe that the above set is non-empty as such

colour exists, as ⊥ ∈ (K ∪ {⊥}) \ {ci1 , ci2 , . . . , cis}. Hence we just need to return

⟨ω1ci1 , . . . , ωscis , ωs+1c⟩, which in the tree constructed always exists and the smallest

node larger than t such that ColourSet(t) ⊆ K ∪ {⊥}.

This indeed takes only time linear in the size of the encoding of a node, which

is O(k log(k)`).

9.5 Strahler number of a Rabin game

In Chapter 4, we identified Strahler number as an important and natural parameter

for parity games and was established to be equivalent to the register number also

defined as a measure of parity games [LB20]. The Strahler number of a parity game

is defined for each player and it captures the complexity of the cycles the opponent

player can trap a player in [DJT20].

The contribution of this section is three-fold. Firstly, we show that the defi-

nition of the Strahler number of a Rabin game extends naturally from parity games.

Secondly, we define and construct ‘small’ colourful Strahler universal trees, closely

following the construction in Chapter 4. Finally, we provide a lifting algorithm on

such colourful Strahler universal trees thus constructed.

Strahler number of a colourful tree. Similar to the Strahler number of a tree,

we define the Strahler number of a (c0, C)-colourful tree, as the Strahler number of

the underlying tree within a colourful tree. More formally, we define the Strahler

number of a colourful tree inductively and say that the Strahler number of any

(c0,∅)-colourful tree is 1. For (c0, C)-colourful trees (c0, ⟨T1, . . . , Tm⟩), it is defined

as the maximum of Str (Ti) among Tis rooted with a colour from C if the maximum

value is obtained from a unique Tj . Else, it is one more than the maximum of

Str (Ti) among the trees Ti for all i.

Tree of decomposition of a Rabin game. Recall the definition of a (c0, C)-
colourful decomposition of a Rabin game. We inductively define a tree of a given

decomposition, which captures the shape of the decomposition.

For a (c0,∅)-colourful decomposition D = ⟨A⟩, we define the tree TD as

⟨⟩ rooted at c0. If on the other hand, we have a (c0, C)-colourful decomposition

D = ⟨A, (c1, V1,D1, A1), . . . , (cj , Vj ,Dj , Aj)⟩, then we define the (c0, C)-colourful

tree as TD = (c0, ⟨(c1, TD1
) , . . . , (cj , TDj

)⟩) where each TDi
is the recursively ob-

tained colourful tree rooted with colour ci.
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Strahler number of a Rabin game. It is defined as the minimum of the Strahler

numbers of all the trees of decompositions of the set of winning vertices for Steven in

a Rabin game G. Although Strahler number of a parity game is defined for both

the players, for Rabin games we will stick to just Steven, since there is no natural

notion of decomposition for Audrey in a Rabin game.

9.5.1 Colourful Strahler universal trees

Similar to Chapter 5 for ordered trees, we define a W-labelled (c0, C)-colourful tree

S`,s(c0,C) such that any (c0, C)-colourful tree with Strahler number at most s, and at

most 2
`

many leaves can be embedded into S`,s(c0,C).

In the following sub-section, we again define the corresponding colourful

version of a Strahler universal trees and prove their universality.

Strahler universality for colourful trees. A (c0, C)-colourful tree is said to

be s-Strahler n-universal if it can embed any (c0, C)-colourful tree with n leaves,

whose Strahler number is at most s. The tree we require is defined with the help of

mutually inductive constructions of S`,s(c0,C) and W`,s

(c0,C) as follows:

1. if C = ∅, and s = 1, then

S`,s(c0,C) = (c0, ⟨(⊥, ⟨⟩)2
`

⟩)

2. if C ≠ ∅ and s = 1 then

S`,s(c0,C) = (c0, ⟨(⊥, ⟨⟩)2
`

,S`,s(ci1 ,C1), . . . ,S
`,s

(cih ,Ch), (⊥, ⟨⟩)
2
`

⟩) ,

where Ci = C \ {ci} henceforth;

3. if ∣C∣ ⩾ s − 1 > 0 and ` = 0 then

S`,s(c0,C) =W`,s

(c0,C) = (c0, ⟨S`,s−1(ci1 ,C1), . . . ,S
`,s−1
(cih ,Ch), (⊥, ⟨⟩)⟩)

4. if ∣C∣ ⩾ s − 1 > 0 and ` ⩾ 1 then

W`,s

(c0,C) =W`−1,s
(c0,C) ⋅ (c0, ⟨S

`,s−1
(ci1 ,C1), . . . ,S

`,s−1
(cih ,Ch), (⊥, ⟨⟩)⟩) ⋅W

`−1,s
(c0,C)

5. if ∣C∣ = s − 1 > 0 and ` ⩾ 1 then S`,s(c0,C) =W`,s

(c0,C)
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6. if ∣C∣ > s ⩾ 2 and ` ⩾ 1 then

S`,s(c0,C) =W`,s

(c0,C) ⋅ (c0, ⟨S
`,s

(ci1 ,C1), . . . ,S
`,s

(cih ,Ch)⟩) ⋅W
`,s

(c0,C)

Proposition 9.5.1. The constructed (c0, C)-colourful tree is S`,s(c0,C) is s-Strahler

2
`
-universal.

Proof. For n ⩽ 2
`
, for a (c0, C)-colourful tree T , which has n leaves, we show T can

be embedded in

1. W`,s

(c0,C) if each Ti such that T = (c0, ⟨T1, . . . , Tj⟩) has Strahler number at most

s − 1;

2. S`,s(c0,C) if T has Strahler number at most s.

The details of the proof are omitted as it is very close to the proof of Lemma 5.1.2

in Chapter 4.

If C = ∅, and for any `, the Strahler number of T is 1, and therefore the

tree can always be embedded in ⟨(⊥, ⟨⟩)n⟩, and the above statement is true.

Similarly, for any tree with s = 1, since the Strahler number is 1, each node

in the tree must have at most one child not coloured with ⊥. Therefore, a tree T
with n leaves and Strahler number 1 is of the form ⟨(⊥, ⟨⟩)n1 , Ti, (⊥, ⟨⟩)n2⟩, where

n1 + n2 ⩽ n, and Ti is a (ci, C \ {ci}) colourful with Strahler number 1.

For any tree with ` = 0, its Strahler number can be exactly 1, and again,

any tree T would have at most one child. This tree can therefore be expressed as

(ci, ⟨Ti⟩). If the child is ⟨(⊥, ⟨⟩)⟩, then trivially this is embedded. If the child is

coloured with ci ≠ ⊥, then S`,s−1(ci,Ci) embeds this tree. Therefore, so do both S`,s(c0,C)
and W`,s

(c0,C).

Now we move to the case where T = (c0, ⟨T1, . . . , Tj⟩) has strictly more than

1 leaf, and Strahler number at least 2. So we have ` > 0, s ⩾ 2 and ∣C∣ ⩾ 1.

We show that if the Strahler number of each children of T is at most s − 1,

then T can be embedded in W`,s

(c0,C) as claimed. This is because one can find a

value p ∈ [1, j] such that T can be expressed as Tleft ⋅ (c0, ⟨Tp⟩) ⋅ Tright where both

Tleft and Tright have at most n/2 leaves, and Tp has Strahler number at most s − 1.

Therefore, each Tleft and Tright can be embedded in W`−1,s
(c0,C) since n/2 ⩽ 2

`−1
. Now

Tp has Strahler number at most s − 1 and is C \ {cip}-colourful. Therefore, Tp can

inductively be embedded into S`,s(cip ,Cp) where Cp = C \ {cip}.

If ∣C∣ = s − 1, indeed all children Ti have Strahler number at most s − 1,

and therefore can be embedded in W`,s

(c0,C) by induction and therefore also in S`,s(c0,C),

which is defined to be identical.
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If not and ∣C∣ > s − 1, then (at most) one of its children, say Tp can have

Strahler number s. Suppose T = Tleft ⋅(c0, ⟨Tp⟩) ⋅Tright, where Tp is a (cip , C \{cip})-
colourful tree. Since none of the children of Tleft or Tright would have children of

Strahler number s, they can be embedded in W`,s

(c0,C) and since Tp does not use

colour cip , it can be embedded in S`,s(cip ,Cp) where Cp = C \ {cip}.

We proceed to show that these trees constructed have size (`+2)2`+s(`+s−2
s−2

)(k−2
s−1

)k!.

Proposition 9.5.2. If ∣C∣ + 1 ⩾ s, then the following inequality holds for S(k −
1, s, `), the number of leaves of S`,s(c0,C), where ∣C∣ = h = k − 1,

S(k − 1, s, `) ⩽ (` + 2)2`+s(` + s − 2
s − 2 )(k − 2

s − 1)k!.

Proof. We prove this by mutual induction on the following two inequalities.

W (h, s, `) ⩽ (` + 2)2`+s−1(` + s − 2
s − 2 )(h − 2

s − 2)(h + 1)!

S(h, s, `) ⩽ (` + 2)2`+s(` + s − 2
s − 2 )(h − 1

s − 1)(h + 1)!

where W (h, s, `) denotes the number of leaves of W`,s

(c0,C) when ` > 0, ∣C∣+1 ⩾ s > 1.

From the definition of the trees, we now inductively see how the terms S(h, s, `) and

W (h, s, `) are defined:

1. if h = 0, s = 1, and any ` > 0 then S(0, 1, `) = 2
`

2. if h ≠ 0 and s = 1 then S(h, 1, `) = hS(h − 1, 1, `) + 2
`+1

.

3. if h ⩾ s− 1 > 0 and ` = 0 then S(h, s, `) =W (h, s, `) = hS(h− 1, s− 1, `)+ 1

4. if h ⩾ s−1 > 0 and ` ⩾ 1 then W (h, s, `) = 2W (h, s, `−1)+hS(h−1, s−1, `)+1

5. if h = s − 1 > 0 and ` ⩾ 1 then S(h, s, `) =W (h, s, `)

6. if h > s ⩾ 2 and ` ⩾ 1 then S(h, s, `) = 2W (h, s, `) + hS(h − 1, s, `)

For s = 1 and h = 0. S(0, 1, `) = 2
`

from Item 1.
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For s = 1, and h > 0. we will show that S(h, 1, `) ⩽ 2
`+1(h + 1)!. The proof

follows from direct induction. In the base case we have h = 1 from Item 1.

Since S(h, 1, `) = h⋅S(h−1, 1, `)+2
`+1

⩽ h⋅2`+1h!+2
`+1

= (h)2`+1h!+2
`+1

⩽

2
`+1 ⋅ (h + 1)!.

Consider h > s − 1 > 0 and ` = 0. then we get S(h, s, `) = W (h, s, `) ⩽ 2 ⋅ h ⋅

h!. Once more, we proceed by induction. We already know that for h = s = 1,

S(1, 1, `) ⩽ 2
2

For values of h larger than 1, we have S(h, s, `) = W (h, s, `) =
h ⋅ S(h − 1, s − 1, `) + 1 ⩽ h ⋅ 2 ⋅ (h − 1)!(h − 1) + 1 ⩽ 2 ⋅ h ⋅ h!

Consider h ⩾ 1, s = 2, and ` ⩾ 1. We will show by induction that for s = 2,

W (h, s, `) ⩽ (` + 2)2`+s−1 ⋅ (h + 1)!.
For h = 1, we show W (1, 2, `) ⩽ (` + 2)2`+1 − 1.

We know by the previous case where ` = 0, W (1, 2, 0) ⩽ 2 ⩽ (` + 2)2`+1 − 1.

We assume the claim holds for ` − 1 and proceed by induction,

W (1, 2, `) = 2W (1, 2, ` − 1) + S(0, 1, `) + 1

⩽ 2 ((` + 1)2` − 1) + (2
`) + 1

⩽ (` + 1)2`+1 − 2 + 2
`
+ 1

= (` + 2)2`+1 − 1

For h ⩾ 2 and s = 2, we will show W (h, s, `) ⩽ (` + 2)2`+s−1 ⋅ (h + 1)h!

W (h, 2, `) = 2W (h, 2, ` − 1) + hS(h − 1, 1, `) + 1

⩽ 2 (((` − 1) + 2)2`+s−2(h + 1)!) + hS(h − 1, 1, `) + 1

⩽ 2 ((` + 1)2` ⋅ (h + 1)!) + h (2
`+1
h!) + 1

⩽ (` + 1)2`+1 ⋅ (h + 1)! + 2
`+1

⋅ h ⋅ h! + 1

⩽ (` + 2)2`+1 ⋅ (h + 1)!

In the above, we use the inequality S(h, 1, `) ⩽ 2
`+1(h + 1)! from the case where

s = 1.
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Consider h > s − 1 ⩾ 2 and ` ⩾ 1. We will show the bound W (h, s, `) ⩽ (` +
2)2`+s−1(`+s−2

s−2
)(h−2
s−2

) ⋅ (h + 1)! on W inductively

W (h, s, `) = 2W (h, s, ` − 1) + hS(h − 1, s − 1, `) + 1

⩽ 2((` + 1)2`+s−2(` + s − 3
s − 2 )(h − 2

s − 2)(h + 1)!)

+ h((` + 2)2`+s−1(` + s − 3
s − 3 )(h − 2

s − 2)h!) + 1

⩽ (` + 2) (2
`+s−1 {(` + s − 3

s − 2 ) + (` + s − 3
s − 3 )}(h − 2

s − 2)(h + 1)!)

⩽ (` + 2)2`+s−1(` + s − 2
s − 2 )(h − 2

s − 2)(h + 1)!

Consider h = s − 1 > 0 and ` ⩾ 1. In this case, we have

S(h, s, `) =W (h, s, `) ⩽ (` + 2)2`+s−1(` + s − 2
s − 2 )(h − 2

s − 2)(h + 1)!

⩽ (` + 2)2`+s(` + s − 2
s − 2 )(h − 1

s − 1)(h + 1)!

Consider h > s ⩾ 2 and ` ⩾ 1. Suppose for all j < h and s
′
< s, we have

S(j, s′, `) ⩽ 2
`+s′(` + 2)(` + s

′ − 2
s′ − 2 )(

j − 1

s′ − 1
)(j + 1)!

S(h, s, `) = 2W (h, s, `) + hS(h − 1, s, `)

⩽ 2((` + 2)2`+s−1(` + s − 2
s − 2 )(h − 2

s − 2)(h + 1)!)+h((` + 2)2`+s(` + s − 2
s − 2 )(h − 2

s − 1)h!)

= 2
`+s(` + 2)(` + s − 2

s − 2 )(h − 2
s − 2)(h + 1)! + 2

`+s(` + 2)(` + s − 2
s − 2 )(h − 2

s − 1)hh!

⩽ (` + 2)2`+s(` + s − 2
s − 2 ){(h − 2

s − 2) + (h − 2
s − 1)} (h + 1)!

⩽ (` + 2)2`+s(` + s − 2
s − 2 )(h − 1

s − 1)(h + 1)!

Our claim about the bounds of S(k− 1, s, `) follow from the fact that k = h− 1.
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9.5.2 Lifting Algorithm Using Colourful Strahler Universal Trees

Here we provide a bit-string labelling for Strahler universal Trees S`,s(c0,C) such that

any (c0, C)-colourful tree with Strahler number at most s, and at most 2
`

many

leaves can be embedded into S`,s(c0,C).

For the last time, we revisit the bit-string order on W = {0, 1}∗, and use

vocabulary from Chapter 5 that we recall here. A word ω ∈ W, if ω = 0 ⋅ ω′ then

0 is a leading bit, and if ω = 1 ⋅ ω′ then 1 is a leading bit of ω. All the bits in ω
′

defined above would be non-leading bits.

We define labelled Strahler universal tree below again to help navigate these

recursively defined trees efficiently. These labelled colourful trees J `,s
C and K`,s

C

are the W-labellings of the colourful Strahler universal trees S`,s(c0,C) and W`,s

(c0,C),

respectively.

1. if C = ∅, and s = 1, then

J `,s
C = { (0

`−1
⊥, . . . , 1

`−1
⊥) }

2. if C ≠ ∅ and s = 1 then

J `,s
C = [J `,s

∅ ]
0⋃

i

(εci ⊙ J `,s
Ci

) ∪ [J `,s
∅ ]

1

where Ci = C \ {ci};

3. if ∣C∣ ⩾ s − 1 > 0 and ` = 0 then

K`,s
C =⋃

i

(εci ⊙ J `,s−1
Ci

) ∪ ⟨ε⊥⟩

and

J `,s
C = [K`,s

C ]
0
=⋃

i

(0ci ⊙ J `,s−1
Ci

) ∪ ⟨0⊥⟩

4. if ∣C∣ ⩾ s − 1 > 0 and ` ⩾ 1 then

K`,s
C = [K`−1,s

C ]
0⋃

i

(εci ⊙ J `,s−1
Ci

) ∪ [K`−1,s
C ]

1

5. if ∣C∣ = s − 1 > 0 and ` ⩾ 1 then J `,s
C = K`,s

C
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6. if ∣C∣ > s ⩾ 2 and ` ⩾ 1 then

J `,s
C = [K`,s

C ]
0⋃

i

(εci ⊙ J `,s
Ci

) ∪ [K`,s
C ]

1

We argue that an operator similar to the one used to navigate the above

colourful universal trees can be modified here to navigate this constructed Strahler

universal tree.

Lemma 9.5.3. The time taken to find the next node in the colourful tree S`,sC is

bounded by O ((s + `)k log k).

Proof. Due to the similarity to the construction in Lemma 5.2.3, we get the following

characterisation of the set of all nodes that are not coloured with a ⊥: all prefixes

of a k-length tuple (ω1ci1 , . . . , ωmcim , . . . , ωkcih) form nodes in the tree if:

0. cia ≠ cib if a ≠ b ⩽ h;

1. the number of bits used in all of w1, . . . , wh is at most (s − 1) + `;

2. the number of non-empty ωis is exactly s − 1;

for each j = 1, . . . , h ⩽ ∣C∣, in this tuple,

3. if there are less than s − 1 non-empty bit strings among ω1, . . . , ωj , but there

are ` non-leading bits used in them, then ωj+1 = 0;

4. if all strings ωj , . . . , ωh are non-empty, then each of them has 0 as its leading

bit.

Other than this, if there is a ancestor of the node ⟨ω1ci1 , . . . , ωmcim⟩ of the above,

then so is the sequence ⟨ω1ci1 , . . . , ωm⊥⟩ a leaf in the tree. Moreover, the element

⟨ω1ci1 , . . . , ωmcim , ω
′
m+1⊥⟩ is also a leaf, where ω

′
∈W and ∣ω′m+1∣ ⩽ `− b, where b

denotes the number of leading bits used in ω1 . . . , ωm.

This gives us a characterisation of Strahler universal trees that allow for easy

navigation, and a succinct encoding of nodes in the colourful tree. Using this, we

argue that with only a small polynomial factor to the size of the trees constructed,

we can obtain an effective lifting algorithm for games of bounded Strahler number.

We also modify the subroutine of computing the next sibling at a given level

in the Strahler universal trees to also compute the next sibling in our construction

of colourful Strahler universal trees. This in turn helps us compute the next node

of the tree. Observe that for a node ω = ⟨ω1ci1 , . . . , ωmcim⟩, such that cim ≠ ⊥,

the tuple of bitstrings ⟨ω1, . . . , ωm⟩ corresponds exactly to a node constructed in a

labelled Strahler universal tree in Chapter 4.
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• If cim ≠ ⊥, then the SNext(ω) is the first child of ω and is therefore the node

⟨ω1ci1 , . . . , ωmcim , ωm+1c⟩, where c is the minimum color in C
⊥\{ci1 , . . . , cim}.

– if c ≠ ⊥, then ωm+1 = 0
t

where t is obtained by finding the child of the

node in a Strahler universal tree. Intuitively, t is the number of 0s to

make the number of non-empty bit strings in some potential node equal

to s− 1, and the number of bits in such a node equal to (s− 1)+ `. More

rigorously, t is obtained by computing:

∗ the number bits left, denoted by b as (s − 1) + ` −∑m
i=1 ∣ωi∣;

∗ the number of positions after m that can host ε, denoted by e =

(h − (s − 1))−number of ωis which are already ε;

∗ the number of positions after m + 1 that cannot host an epsilon,

denoted by f = h −m − e − 1;

and finally, we define t = b − f .

– alternatively, if c = ⊥, then ωm+1 = 0
t

where t = ` − b where b is the

number of leading bits among ω1, . . . , ωm.

• If cim = ⊥, then the node w is a leaf, and we need to find a sibling of ω or the

largest ancestor of w with a sibling. First, we check if there is a sibling of the

given node. This is done by finding the value t = `− b, where b is the number

of leading bits among ω1, . . . , ωm. Later, if nextstring
t(ωm) is defined, then we

declare SNext(ω) = ⟨ω1ci1 , . . . , nextstring
t(ωm)cim⟩.

If such a node is  , then we compute its next value as follows. Let p be the

largest position where the tuple ⟨ω1, . . . , ωm⟩ has a next sibling when viewed

as a node in the Strahler universal tree. Such a p is simply found by finding

the largest p ⩽ m such that at least one of the following is not true.

1. the number of non-empty ωis is s − 1;

2. the number of bits used in all of ω1, . . . , ωp is (s − 1) + `;
3. ωp = 1

j
for some j > 0 but the number of non-leading bits used in them

is `. The number of non-empty bit strings among ω1, . . . , ωp is `.

4. if ωp = 01
j

for some j ⩾ 0, the number of non-leading bits used in

ω1, . . . , ωp is `, and all bit strings ωr, . . . , ωm are non-empty.

We also simultaneously find the largest position q ⩾ m such that a following

c exists where c is the smallest colour larger than cq in C
⊥ \ {ci1 , . . . , ciq}. If

q ⩾ p, then we say SNext(ω) = ⟨ω1ci1 , . . . , ωqc⟩. If p > q, then we find the
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next node in the underlying Strahler universal tree at level p. Let this node

be represented by the tuple ⟨ω1, ω2 . . . , ωp−1, ω
′
p⟩, where ω

′
p is obtained using

the following two cases:

– If less than ` non-leading bits are used in ω1, . . . , ωp, then we set ω
′
p to

be ωp10
b

so that exactly t non-leading bits are used in ω1, . . . , ωp−1, ω
′
p

– If exactly ` non-leading bits are used instead, then we let ω
′
p to instead

be defined such that ωp = ω
′
p01

j
.

We now return the node ⟨ω1ci1 , . . . , ωp−1cip−1 , ω
′
pc⟩ where c is the smallest colour

larger among C
⊥ \ {ci1 , . . . , cip−1}.

Proposition 9.5.4. Given a node in the W-labelled (c0, C)-colourful tree J `,s
C and

a subset of colours K ⊆ C, such that the colouring of the node is in K, the next

node larger than it, whose set of colours used is contained in K ∪ {⊥} can be found

in time O((s + `)k log(k)), where k = ∣C ∪ c0∣.

Proof. The proof is similar to that of Lemma 9.4.9. We, however, give it for com-

pleteness. For any node t = ⟨ω1ci1 , . . . , ωmcim⟩ we know cim ∈ K. We first find

largest position p such that ColourSet (⟨ω1ci1 , . . . , xscip⟩) ⊆ K
⊥

, , where K
⊥

de-

notes K ∪ {⊥}. Observe that this implies cip+1 ∈ K and cip+1 ≠ ⊥.

We then compute the next node to ⟨ω1ci1 , . . . , ωp+1cip+1⟩ instead such that

ColourSet(t) does not intersect with the set of colours C \K. But for the tree J s,`
C

constructed, consider the smallest colour c ∈ K
⊥ \ {ci1 , ci2 , . . . , cip} such that c is

also larger than cip+1 . The above set is non-empty since it contains ⊥. Hence we

just need to return ⟨ω1ci1 , . . . , ωscis , ωs+1c⟩ which is the smallest node larger than

t such that ColourSet(t) is contained in K
⊥

. This indeed takes only time linear in

the size of the encoding of a node, which is O((s + `)k log(k)).

From Theorem 9.3.4, we know that our lifting algorithm can be performed

on any tree and from Theorem 9.5.5, we know that small Strahler universal trees

exist and we know from Lemma 9.5.3 and Proposition 9.5.4 that these trees can be

navigated effectively. Combining these results, we get the following theorem.

Theorem 9.5.5. A (c0, C)-colourful Rabin game with n vertices m edges, of

Strahler number s, and k = ∣C∣+ 1, where s ⩽ min{⌈lg n⌉, k} can be solved in space

that is O(nk log n lg k) and time

Õ (nmk2
s(⌈lg n⌉ + s − 2

s − 2 )(k − 2
s − 1)k!) .
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Chapter 10

Rabin games against a fair

opponent

A motivation to work on Rabin games is to solve reactive synthesis of systems based

on given high-level specifications. However in many cases, solutions to the synthesis

problem do not exist for mundane reasons. For instance, consider the case where a

machine can be synthesised as long as the input sequence is restricted to a specific

language. Alternatively, in some other case, solutions could exist if some rationality

is assumed on behalf of the environment the synthesised machine interacts with.

Indeed, the former setting where the input was restricted to LTL formulas was

considered by Chatterjee, Henzinger and Jobstmann [CHJ08] and the latter model

was considered in the works of Fisman, Kupferman, and Lustig [FKL10] and also

Kupferman, Perelli, and Vardi [KPV16].

One such case of inability to solve the synthesis problem could be due to the

presence of “unfair” executions of a synthesised model. In such cases, solutions to

the synthesis problem could benefit if additional fairness constraints are imposed on

its executions. In fact, with a similar motivation, this problem was recently studied

in the work of Banerjee et al. [BMM
+

22] where they considered Rabin games with an

additional condition of strong transition fairness [QS83] for the environment. Their

contribution was a symbolic algorithm for the above problem that took O(nk+1(k)!)
symbolic steps. However, they left open the question of finding effective enumerative

algorithms.

In this chapter, we consider Rabin games with strong transition fairness and

provide algorithms that match the running time of algorithms to solve Rabin games

(without any additional fairness conditions). We generalise our algorithms from

Chapter 9 to also identify the winner in Rabin games with transition fairness [QS83,
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BMM
+

22], which therefore also identifies a winner of almost-sure winning conditions

of turn-based stochastic Rabin games [CdAH05].

In a game with transition fairness, a set of edges starting from environment

vertices are marked “live”. If the game visits a source vertex of a live edge infinitely

often, Audrey must ensure that this live edge is also traversed infinitely often. In

a stochastic game, instead of a partition of the vertex set among Steven and Au-

drey, we have a tri-partition of the set of vertices between Steven, Audrey and the

remaining vertices marked “random.” When the game visits a random vertex, one

of its neighbours is chosen uniformly at random. Almost-sure winning conditions

for stochastic games are a special case of games with transition fairness: allocate all

random vertices to the environment and mark every outgoing edge from a random

vertex to be live.

We first show that the winning region of a fair Rabin game has a colourful

fair decomposition. Since colourful fair decompositions are also naturally associated

to colourful trees, we ask if one can indeed construct an algorithm that solves these

games using our universal colourful trees defined in the Chapter 9. We answer this

question positively and provide a simple progress measure lifting algorithm to solve

such games. Together with our universal colourful trees defined in the Chapter 9,

we obtain a Õ(mn2(k!)1+o(1))-time and O(nk lg k lg n)-space algorithm for Rabin

games with transition fairness as well as for almost sure winning in turn-based

stochastic Rabin games. While there is a known reduction from Rabin games with

transition fairness to usual Rabin games with at most nk vertices, our algorithm

shaves off a k
3

factor from the above in the worst case.

10.1 Games with live edges

Consider a Rabin game in which a subset L of the set of Audrey’s edges (out-going

from Audrey’s vertices) are identified as live edges. A play in this game is fair with

respect to this set L of live edges if for every live edge u→ v, if u is visited infinitely

often, then the edge u → v is taken infinitely often. Alternately, one can state that

for each edge, if this path visits the source of any edge in L infinitely often, then it

also visits the target of that edge infinitely often. An infinite path satisfies the fair

Rabin condition with respect to L if it is not fair with respect to L or satisfies the

Rabin condition.

A (c0, C)-colourful fair Rabin game G is defined similarly to Rabin games and

consists of an underlying (c0, C)-colourful Rabin game whose vertices are partitioned

VA and VS , belonging to Audrey and Steven, respectively, and a subset L ⊆ E of
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live edges such that the source vertex of each edge in L is owned by Audrey. A fair

Rabin game is said to be winning from a vertex for Steven if there is a positional

strategy σ ⊆ E of Steven such that all infinite paths starting from this vertex in

the graph obtained restricted to the set of edges σ satisfy the fair Rabin condition.

One can, in polynomial time, convert a fair Rabin game to a Rabin game with a

similar set of vertices and edges (live edges become normal edges) where the winners

are preserved. Although this reduction shows that these fair Rabin games have a

positional winning strategy for Steven, it increases the number of colours in the new

Rabin game.

Proposition 10.1.1. For a (c0, C)-colourful Rabin game, with live edges L, there

is a Rabin measure into an L-labelled (c0, CL)-colourful tree, where the set CL =

C ∪ {ce ∣ e ∈ L}, where all infinite paths satisfy the Rabin condition.

Proof. Observe that a (c0, C)-colourful graph G with Rabin, with live edges L, can

be encoded as a (c0, CL)-colourful Rabin game over the same graph where the set

of colours CL = C ∪ {ce ∣ e ∈ L}. For any live edge e = u → v, we redefine the bad

sets and good sets of colours from G, that is, Bv and Gu to include ce in addition

to the other colours assigned to it by the game G with live edges.

We list two ways to find if Steven wins from a specific vertex using known

techniques.

Approach one: The above Rabin condition on a (c0, C)-colourful game with

strong transition fairness with live edges enlisted in a set L can be converted into a

(c0, C ∪ L)-colourful Rabin game with no fairness conditions imposed on Audrey.

On a Rabin game with n vertices, k colours and t live edges, we have an

algorithm that runs in time Õ(mn2(k + t + 1)!1+o(1)) time.

Approach two: One could use gadgets constructed in the work of Chatterjee, de

Alfaro and Henzinger [CdAH05] to show almost-sure winning condition for Rabin

games can be reduced to solving Rabin games without stochastic vertices. A direct

modification of their gadget would give us a method to convert a (c0, C)-colourful

Rabin game with live edges L into a (c0, C)-colourful Rabin game without fairness

and with at most O(tk+n) many vertices. This takes Õ((m + tk)(n + tk)2(k)!1+o(1))
time from Algorithm 10 from Theorem G. This reduces the exponential dependence

on (k+ t)! already to a k!. We do not elaborate on these gadgets, but refer a reader

to the work of Chatterjee, de Alfaro and Henzinger [CdAH05] or to the work of
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Chatterjee, Henzinger and Jurdziński [CHJ05] where similar gadgets are used to

find if Steven wins almost surely in stochastic Rabin and parity games, respectively.

Our main contribution is our characterisation of Rabin games with fairness

using colourful fair decomposition. This leads to a lifting algorithm for fair Rabin

games that is faster by a polynomial factor than the second approach.

10.2 Colourful fair decomposition

Following a pattern similar to Chapter 9, here we define a colourful fair decomposi-

tion and a measure for fair Rabin games, and show that these exactly characterise

games where Steven wins.

Colourful fair decomposition. Consider a (c0, C)-colourful Rabin game G with

the arena (V,E), sets of good colours {Gv} and bad colours {Bv} for each vertex

v ∈ V and a set of live edges L. For a fixed positional strategy σ of Steven, a (c0, C)-
colourful fair decomposition D is defined on the game G∣σ obtained by restricting

to the strategy edges. For a fixed σ, the decomposition D of G∣σ is a recursive sub-

division of vertices of G into subsets of vertices that satisfies specific conditions. If

C = ∅, then we say D = ⟨V ⟩ is a (c0, C)-colourful fair decomposition all fair paths

in G∣σ if all fair paths from all vertices in V visit a vertex v such that c0 ∈ Gv. Else,

if C and V are non empty, we say that the decomposition

D = ⟨A, (c1, V1,D1, A1) , . . . , (cj , Vj ,Dj , Aj)⟩

satisfies the following conditions if there is a fixed positional Steven strategy such

that:

1. A is the set of all vertices in V such that all fair paths starting from A in G∣σ
visit some vertex v ∈ V such that c0 ∈ Gv;

and setting G1 = V \A. For i ∈ {1, . . . , j}, we have

2. Vi is a set of vertices such that there are no fair paths in Gi∣σ which start at

a vertex in Vi and visit a vertex in Gi \ Vi and ci ∉ Bv for all v ∈ Vi ;

3. Di is a (ci, C \ {ci})-colourful fair decomposition of Vi (with the same Steven

strategy σ);

4. Ai is the set of all vertices in Gi∣σ such that all fair paths from Ai within Gi
visits some vertex in Vi;

194



5. Gi+1 = Gi \Ai;

and we have Gj+1 = ∅.

Instead of producing a definition with attractors in games, as we have done

for attractor decompositions as well as for colourful decompositions, we only deal

with games obtained on restriction to a strategy where all fair paths satisfy the

Rabin condition. However, if one wishes so, one could instead consider the nearly

identical definitions of colourful decompositions, only to replace Steven attractors

with a modified definition of “fair attractors” defined for Steven, and “fair traps”

defined for Audrey. But to avoid many new concepts, we restrict ourselves to paths

in strategy graphs.

A measure for live Rabin games. Consider a map λ from the vertices of a

(c0, C)-colourful game G to an L-labelled (c0, C)-colourful tree L which contains an

additional ⊤ element. An edge u→ v is said to be live consistent in a mapping λ if

it satisfies the condition G` defined below and B, defined in Section 9.2.

(G`) colour(λ(u)) = ⊥ and moreover, GCA(λ(u), λ(v)) = parent(λ(u))

This intuitively says that the measure along this edge might potentially increase, but

not larger that the last descendent of its parent. We say a vertex v is live-consistent

if

• it has at least one edge that is satisfying (G≻ AND B), and

• every other outgoing edge satisfies (G` AND B).

For every fair infinite run that visits this live-consistent vertex infinitely often also

satisfies G≻ infinitely often. This is because along the live edge that is taken for this

run to be fair, the measure along this live edge decreases. Finally, we say a mapping

λ is live consistent if all vertices are consistent or live consistent.

Theorem 10.2.1. Given a (c0, C)-colourful Rabin game G and a designated set

of live edges L ⊆ E then the following statements are equivalent:

1. Steven has a positional strategy σ such that all infinite paths in the restricted

game G∣σ satisfy the fair-Rabin condition.

2. there is a (c0, C)-colourful fair decomposition of vertices of V .

3. there is a live-consistent map λ from vertices of G to a L-labelled (c0, C)-

colourful tree rooted at colour c0;
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Lemma 10.2.2 ((1 ⟹ 2) of Theorem 10.2.1). Given an (c0, C)-colourful Rabin

graph and a set L of live edges. If all paths satisfy the Rabin condition, then there

is a (c0, C)-colourful fair decomposition.

Proof. We construct such a fair colourful decomposition by fixing the same strategy

σ and constructing a decomposition inductively on the sum of the number of colours

in C and the number of vertices in G.

Base case. If C = ∅, then for all vertices v, Bv = ∅. All fair paths in the

SCCs after finitely many steps must visit a vertex v such that Gv = {c0}. This is

because all fair paths in G∣σ satisfy the Rabin condition. The (c0, C)-colourful fair

decomposition is just ⟨V ⟩.

Induction hypothesis. For all (c0, C)-colourful Rabin games using Steven strat-

egy σ, in the restricted game G∣σ, all fair paths satisfy the Rabin condition. Since

we have fixed a strategy σ, to avoid cumersome notation, we henceforth refer to the

game G∣σ using G itself, but require that all fair paths in G to satisfy the fair-Rabin

condition. We assume that there is a (c0, C)-colourful fair decomposition

D = ⟨A, (c1, V1,D1, A1) , . . . , (cj , Vj ,Dj , Aj)⟩

where c0 ∉ Bv for all v ∈ V , and for all v ∈ V , if c0 ∈ Gv then v ∈ A.

Induction step. Consider all vertices B = {v ∣ c0 ∈ Gv}, and let A ⊇ B be the

maximum set of vertices from which every fair path starting from A visits some

vertex from B. It is routine to verify that there is such a unique maximum set.

Consider the subgame G1 induced by the set of vertices V \ A. This is a

subgraph of G also satisfies the property that all vertices have an outgoing edge.

More importantly, all fair paths in it satisfy the Rabin condition as these paths are

also fair paths in the original graph. Furthermore, there are no vertices v such that

c0 ∈ Gv or c0 ∈ Bv for v ∈W \A.

Consider an SCC decomposition of the graph induced by V \A. Consider a

bottom SCC (an SCC from which there is no path to other maximal SCCs) V1 of the

graph induced by V \ A. Consider a path π such that the set of all vertices visited

by π infinitely often is exactly V1. Clearly, there is no unfair path from V1 to the

subgame G1 \ V1, since there is no path out of V1. More specifically, the path that

visits all the edges within V1 infinitely often satisfies the fair Rabin condition. This

implies that there is some colour c1 such that c1 ∉ Bv for all v ∈ V1 and c1 ∈ Gv for

some v ∈ V1.
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Therefore, by induction, there is a (c1, C \ {c1})-colourful fair decomposition

of V1, say D1. Let A1 denote the maximum set of vertices in V \ A from which all

fair paths lead to a vertex in V1.

Now consider the game G2 = (V \A) \A1, which has fewer vertices and is a

subgraph of G and where again there are no vertices v such that c0 ∈ Gv or c0 ∈ Bv

for v ∈ G2, there must be a (c0, C)-colourful fair decomposition.

Let this fair decomposition be:

D′
= ⟨∅, (c2, V2,D2, A2) , . . . , (cj , Vj ,Dj , Aj)⟩

Observe that there are no vertices v where c0 is a good colour or a bad colour for

v. Therefore, the top set of vertices is ∅, due to our induction hypothesis.

We claim that the colourful fair decomposition

D = ⟨A, (c1, V1,D1, A1) , (c2, V2,D2, A2) , . . . , (cj , Vj ,Dj , Aj)⟩

constructed from the sets defined above is a (c0, C)-colourful decomposition.

It is routine to verify that the decomposition constructed satisfies all the

properties of a colourful fair decomposition by construction.

Lemma 10.2.3 ((2⟹ 3) of Theorem 10.2.1). Given a (c0, C)-colourful fair Rabin

graph G with live edges L, and a (c0, C)-colourful fair decomposition of it, there is

an live-consistent λ from the vertices of such a game to a L-labelled (c0, C)-colourful

tree L.

Proof. We follow suite of Lemma 9.2.3 in this proof, and combine it with a fair

distance function. As in the previous proof, we first fix a positional strategy for

Steven that ensures that he has a Steven decomposition D on the restricted game

G∣σ. Note that it is enough to treat the game as if all the vertices now belong to

Audrey and then show that the mapping λ (that we shall define below) is a live-

consistent mapping. Henceforth, we assume that G is the game obtained from fixing

a Steven strategy.

To define such a mapping, we in turn use a fair-distance function for a

fixed set of target vertices T , written DT , and sometime just D when T is clear

from context. Intuitively, such a function assigns to all vertices that can eventually

reach T , a number natural number which indicates a modified distance in the game

G from the target set. However, note that unlike a distance function defined for

Lemma 9.2.3, this function does not decrease along all edges. In fact, it might

increase along an edge of G, if it has a live edge from the same vertex along which it
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decreases. Let A be the set of vertices in V such that all fair paths in G eventually

visits T . More formally, this function DT maps the set of vertices A of the fair game

G, to a natural number from {0, 1, . . . , ∣A∣ − 1} such that

• if v ∈ T , then DT (v) = 0;

• if there are no live edges from v, then DT (v) > DT (w) for all v → w;

• if there is a live edge from v, then DT (v) > DT (w) for some live edge v → w.

We prove the existence of such a function DT in Proposition 10.2.4 after the proof

of this lemma.

Suppose C = ∅. In this case, our (c0,∅)-colourful fair decomposition D = ⟨V ⟩.
Let t denote the length of the longest path in G which does not visit a vertex for which

c0 is a good colour. Then we consider an L-labelled (c0, C)-colourful tree L, which

consists of t leaves, all denoted by {⟨α1⊥⟩ , . . . , ⟨αt⊥⟩}, where α1 < α2 < ⋅ ⋅ ⋅ < αt,

each αi, an element of N.

We construct the map λ that assigns all vertices v ∈ V such that c0 ∈ Gv

to the root of a labelled (c0, C)-colourful tree denoted by ⟨⟩. For vertices v where

c0 ∉ Gv, we define DT (v) as the fair-distance function to the set of vertices T = {v ∈
V ∣ c0 ∈ Gv}. We then define λ for each v ∈ V \ T to be ⟨αi⊥⟩ where DT (v) = i.

We verify that such a mapping satisfies the condition for it to be live-

consistent. Since Bv = ∅ for all v, all the vertices satisfy B trivially. Observe

that since u is a child of the root, all edges out of u are live-consistent. We only

need to show that the vertex u itself is live-consistent. If there are no fair edges,

then the arguments are similar to Lemma 9.2.3. If there is a live edge, showing

vertex u is live consistent is routine and follows from the definition of fair distance

and live consistent, and hence we omit it.

Suppose C ≠ ∅. In this case, we have a (c0, C)-colourful fair decomposition and

D = ⟨A, (c1, V1,D1, A1), . . . , (cj , Vj ,Dj , Aj)⟩ .

Inductively, for each Vi, which has a (ci, C \ {ci})-colourful fair decomposition, we

have a mapping λi to an L-labelled (ci, C \ {ci})-colourful tree Li.
We give a Rabin measure λ into the colourful tree T defined as the set

{ ⟨α0
1⊥⟩ , . . . , ⟨α0

t⊥⟩ }
j

⋃
i=1

{αi0ci ⊙ Li, ⟨αi1⊥⟩ , . . . , ⟨αit⊥⟩ }
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of nodes where α
i
` are elements from L such that if i1 < i2, then α

i1
` < α

i2
`′

and

if `1 < `2, then α
i
`1 < α

i
`2 . We define λ(u) from a fair decomposition D above as

follows. The tree is similar to the ones in Fig. 9.5.

• If u ∈ A and c0 ∈ Gu, then λ(u) = ⟨⟩.

• If u ∈ A \ {v ∈ A ∣ c0 ∈ Gv}, we define λ(u) = ⟨α0
`⊥⟩ where DB(u) = `, with

DB defined as the fair-distance function to the target set B = {v ∣ c0 ∈ Gv}.

• For vertices u ∈ Vi, we define λ(u) = α
i
0ci ⊙ λi(u), where λi is obtained

inductively.

• For vertices u ∈ Ai \Vi, we define λ(u) = ⟨αi`⊥⟩ where DVi(u) = `, where DVi

is again defined as in Proposition 10.2.4 with target set Vi.

We show that the λ defined above satisfies the conditions required for it to

be a live-consistent Rabin measure. To prove live consistency, we need to show that

each vertex in the graph G is consistent or live consistent.

For the rest of the proof, we sometimes write A0 to also refer to A and V0

to refer to the set {v ∈ A ∣ c0 ∈ Gv}. Let Gi be defined similarly to the definition

of a fair decomposition, where G1 = V \A, and Gi+1 = Gi \Ai. We moreover define

G0 = V . The following observation about the map λ defined is useful to show that

it is indeed a live-consistent map.

($) For i ∈ {0, 1, . . . , j}, any vertex in u ∈ V \Gi is such that λ(u) ≺ λ(v)
for any v ∈ Gi.

• If u ∈ A and c0 ∈ Gu, then λ(u) = ⟨⟩ and for all edges u → v satisfies G↓.

Since the root is coloured with c0, such edges also satisfy B since Bu = ∅.

• If u ∈ A and c0 ∉ Gu, then since λ(u) = ⟨α0
`⟩ where ` is the value given by

the fair distance function (Proposition 10.2.4), either there are no live edges

and instead all edges u → v satisfies G≻ or there is at least one live edge and

it satisfies G≻ whilst all the other edges satisfy G`. Since the root is coloured

with c0, all edges from u also satisfies B since Bu = ∅.

• If u ∈ Ai \ Vi, for i ∈ {0, 1, . . . , j}, and suppose λ(u) = ⟨αi`⊥⟩ we show that u

satisfies G≻ or G`, and at least one live edge satisfies G≻. Since u is mapped to

a child of the root, all edges from it satisfy G` trivially. All we are left to show

is that at least one edge satisfies G≻whenever there is a fair edge from u. But

this follows from the definition of λ, which was derived from the fair-distance
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function, with only minor modifications needed from the similar case in the

proof of Lemma 9.2.3.

That vertex u also satisfies B because the only ancestor of λ(u) is ⟨⟩, and it

is coloured with c0, and c0 ∉ Bv for any v, and therefore specifically c0 ∉ Bu.

• If u ∈ Vi for i ∈ {1, . . . , j}, for all edges u → v, vertex v is either in Vi or

in V \ Gi. This is because, due to the definition of a fair decomposition, Vi

is a set of vertices which has no fair path to Gi \ Vi. If v ∈ V \ Gi, we know

that λ(u) ≻ λ(v) from ($), and thus G≻ is satisfied. On the other hand,

if v ∈ Vi, then λi(u) and λi(v) are both defined. If edge u → v satisfies

G↓ in λi, then it continues to satisfy G↓ in λ. In the case where edge u → v

satisfies G≻ in λi, that is, λi(u) ≻ λi(v), then it satisfies G≻ in λ as well. Finally,

again for G`, the same holds inductively. We end the proof by remarking that

ColourSet(λ(u)) = ColourSet(λi(u)) ∪ {ci}. Thus, B is also satisfied by the

edge u→ v.

Proposition 10.2.4. Consider a graph G with live edges L, and a target set T . Let

A be a set of vertices such that all fair paths that start from A, stay in A and lead to a

vertex in T , then there is a function DT from all vertices of a A to {0, 1, . . . , ∣A∣−1}
such that DT (u)

• if v ∈ T , DT (u) = 0;

• if there are no live edges from v, then DT (u) > DT (v) for all u→ v;

• if there is a live edge from u, DT (u) > DT (v) for some live edge u→ v.

Proof. Consider the set consisting of all functions D from A to N∪{∞} that satisfy

• if v ∈ T , D(u) = 0;

• if there are no live edges from v, then D(u) > D(v) for all u→ v;

• if there is a live edge from u, D(u) > D(v) for some live edge u→ v.

It can be verified that this set of functions is closed under point-wise minimum.

Therefore, this set indeed has a smallest element. Consider the smallest such func-

tion DT that satisfies the above condition. We claim indeed that the smallest func-

tion can be defined as

DT (u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if v ∈ T

max{DT (v) ∣ u→ v ∈ E} if there are no live edges from v

min{DT (v) ∣ u→ v ∈ L} if there is some live edge from v.
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Indeed, it is clear that any function that does not satisfy the above condition at

some vertex can be modified locally to produce a smaller function that does satisfy

this condition at a specific vertex. First we show that such a function DT maps no

vertex to ∞ if all fair paths lead to T .

Assume to the contrary that the set of all vertices labelled above with ∞,

denoted by the set U is non-empty. For each vertex u ∈ U , if there are no outgoing

live edges from u, then there is some edge u → v such that v ∈ U . If there are live

edges, all outgoing live edges also lead to U , sinceDT (u) = min{DT (v) ∣ u→ v ∈ L}.

Hence any path in U ⊆ A can be extended infinitely to remain in U in such

a way that is fair, contradicting our assumption that all fair paths in A lead to T .

The minimality of DT also ensures that the range of DT does not exceed ∣A∣−1.

Lemma 10.2.5 ((3 ⟹ 1) of Theorem 10.2.1). Given a (c0, C)-colourful Rabin

graph G with a designated set of live edges L, if there is a live-consistent λ from

vertices of G to a L-labelled (c0, C)-colourful tree then all infinite paths satisfy the

fair Rabin condition.

Proof. We need to show that all infinite path that are fair also satisfies the Rabin

condition in this graph where each vertex is live-consistent or consistent. The rest

of the proof is similar to the proof of Lemma 9.2.6, with modifications taken into

account for fairness.

For an infinite fair path ρ = v0 → v1 → v2 → . . . vi → vi+1 → . . . consider

λ(ρ), the infinite sequence t0, t1, . . . where each ti = λ(vi). We define tmin as the

smallest element that occurs infinitely often among the sequence consisting of the

elements ti and c = colour(tmin). We show that this fair run satisfies the Rabin

condition with the following three items.

(a) c ≠ ⊥;

(b) c ∈ Gv for infinitely many vis;

(c) c ∉ Bv for all but finitely many vis.

We will prove the items in Proposition 9.2.5 for the path ρ, which will require slight

changes in the argument due to the newly introduced G` condition. That is, we will

prove tmin is

1. the largest common ancestor of ti and ti+1 infinitely often

2. an ancestor of all but finitely many tis.
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Notice that assuming that the above two items hold for tmin, Item a follows from

tmin being an ancestor, and Item b and Item c follow directly from Item 1 and

Item 2, respectively. To prove Item 1 and Item 2, we start by recalling that for any

vi → vi+1 one of the following conditions is true, since all vertices are consistent:

(i) λ(vi) ≻ λ(vi+1) (the edge satisfies G≻);

(ii) λ(vi) = GCA(λ(vi), λ(vi+1)) (the edge satisfies G↓);

(iii) parent(λ(vi)) = GCA(λ(vi), λ(vi+1)), but there is some a vi → w ∈ L such

that λ(vi) ≻ λ(w) (this edge satisfies G` but some other live-edge out of it

however satisfies G≻);

Let p be the position after which all k > p, the node tk are such that tk occurs

infinitely often in ρ. Let this position p be chosen moreover so that tp = tmin.

1. For any i with λ(vi) = tmin, observe that the edge (vi, vi+1) cannot satisfy

condition (i), since tmin is the smallest element occurring infinitely often and

therefore λ(vi) ⊁ λ(vi+1). This edge cannot satisfy condition (iii), because

since the infinite path is fair, this would imply there exists some outgoing

edge of vi which satisfies G≻which is taken infinitely often, contradicting the

minimality of tmin. Therefore, on path ρ, an edge (vi, vi+1) with λ(vi) = tmin

satisfying G↓ should be taken infinitely often. Item 1 directly follows from this

argument.

2. We argue that tp is an ancestor of all tj with j ⩾ p. Let the next occurrence of

tmin be at tq. More formally, we show tp = GCA(tp, tp) = GCA(tp, tp+1) = ⋅ ⋅ ⋅ =
GCA(tp, tq). We proceed by induction. In the base case GCA(tp, tp) is trivially

tp. We assume that tp is an ancestor of tp+i, and show tp is also an ancestor

of tp+i+1. For brevity, we use j = p + i. For any two consecutive tj , tj+1,

either tj ≻ tj+1 (by condition (i)), tj is an ancestor of tj+1 (by condition ii) or

parent(tj) is an ancestor of tj+1 (by condition (iii)). In the first two cases, we

get tp is an ancestor of tj+1 following the proof of Proposition 9.2.5. In the

last case, we observe that tj ≠ tp = tmin from the minimality of tmin as shown

in the proof of item 1. Hence tp is an ancestor of the parent of tj . Since the

parent of tj is an ancestor of tj+1 from condition (iii), any other ancestor of

the parent of tj is an ancestor of tj+1 as well. Thus we get tp = GCA(tp, tj+1).
This proves our claim and item 2 follows directly.
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10.3 A lifting algorithm for fair Rabin games

We show that the lifting algorithm described in Chapter 9 can be modified to

accommodate edges with strong fairness condition on Audrey’s vertices. The mod-

ifications are minimal and require only one additional condition for a lift operator

to perform.

Lift operator for Rabin games with liveness. We extend the definition of the

lift operator in the setting of games with live edges. Consider a mapping λ from

vertices of a game to L⊤, an L-labelled (c0, C)-colourful tree rooted at colour c0

with an additional ⊤ element, i.e. L⊤.

For an edge e = u→ v in the game G, we define fairliftλ(v) to be the smallest

element t ∈ L ∪ {⊤} at least as large as λ(v) in the mapping λ[v ≔ t] and such

that v is consistent or live-consistent.

LiftFairv to be a function from the set of all maps from V to L∪{⊤} to itself

such that

LiftFairv(λ)(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ(u) if u ≠ v

fairliftλ(v) u = v

Proposition 10.3.1. The function LiftFairv is inflationary and monotone.

By definition this operation is inflationary, since LiftFairv on a mapping λ is

equal at all u ≠ v and at least as large as the λ(v) at v.

To show that the above function is monotonic, we show that for two mappings

that satisfy λ1 ⊑ λ2, we also have LiftFairv(λ1) ⊑ LiftFairv(λ2). This follows closely

from the definition of fairlift.

Since the operator LiftFairv is both inflationary and monotonic, the simul-

taneous fixpoint of this operator exists, and moreover any maximal chain obtained

by application of these operators on λ reaches the least simultaneous fixpoint larger

than λ.

To conclude that a lifting algorithm would take time O(mk∣L∣ lg n lg k), we

only need to show that fairliftλ(v) can be computed in time O(deg(v)k lg n lg k),
which we do so later in Lemma 10.3.2. But we state our main theorem, which we

obtain from Theorem 10.2.1, Lemma 10.3.2 and Theorem 9.4.2.

Theorem H. Finding the winner in a fair Rabin game can be determined in
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O(nk log n log k) space and time

Õ (nm ⋅ k!(min{n2
k
,(` + kk − 1)})) .

We finally show the building block of the fair lifting operator can be imple-

mented in time (deg(v)k` lg k) below.

Lemma 10.3.2. Given a mapping λ, a (c0, C)-colourful Rabin game G with n

vertices, along with a vertex v, computing fairliftλ(v) takes time O(deg(v)k` lg k)
with k colours and ` = ⌈lg n⌉.

Proof. Suppose there are no live edges from a vertex v, observe that LiftFairv = Liftv,

defined in Section 9.3. Otherwise if v is an Audrey vertex that has live outgoing

edges, we want to show how to calculate fairliftλ(v), the minimum value larger than

λ(v) that makes v consistent, or live-consistent with respect to λ. To do this, we will

get the minimum of two values, the one obtained just from lift and the other from

fairlift. Since computing maxv→u{liftλ(v, u)} already takes the claimed running time

from Lemma 9.4.9, setting v to it in λ would make it consistent and we dedicate to

the rest of the proof to finding the time taken to compute the other where setting

v to it makes the map live-consistent.

Suppose u1, u2, . . . , ud are the out-neighbours of the vertex v, such that

λ(u1) ≺ λ(u2) ≺ ⋅ ⋅ ⋅ ≺ λ(ud). We assume strict inequality, because it is enough

to consider only one among two edges with the same value. We assume that v is

not already live-consistent with respect to λ.

Recall that our objective is to find a node larger than λ(v), such that mapping

v to this node would make v live-consistent. Moreover, at least one edge needs to

satisfy G≻ for v to be live-consistent.

Let i be the smallest index such that v → ui is live.

1. If λ(v) ⪯ λ(ui), then there are no outgoing edges from v that satisfy G≻.

Therefore to make v live-consistent, it must take a value at least as large as

the next element of λ(ui).

2. If λ(v) ≻ λ(ui), the live-edge v → ui already satisfies G≻ with respect to λ and

any increase in the value of v would satisfy G≻ too. In this case, we find the

largest j such that λ(v) ⪰ λ(uj). Since we assumed v is not consistent, j < d.

For case 1 above, we set m to be i and for case 2, we let m to be j. Since v

must be set to a value larger than λ(ui) for item 1 and λ(v) for item 2, we declare
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t = λ(um) in the former and t = λ(v) in the latter case. For both cases, we have

λ(u1) ≺ ⋅ ⋅ ⋅ ≺ λ(um) ⪯ t ≺ λ(um+1) ≺ λ(ud).
Let t1, . . . , td−m correspond to the sequence λ(um+1), . . . , λ(ud). The prob-

lem can now be solved in O(deg(v)k` lg k), thanks to Proposition 10.3.3. We remark

that the reason for i in the third item being strictly smaller than p is that if in-

deed t
∗
⩾ tp, then all edges must satisfy G≻ and this case is similar to computing

liftλ(v). Proving the proposition in the following, we conclude that fairliftλ(v) can

be computed in O(deg(v)k` lg k).

Proposition 10.3.3. In the n-universal (c0, C)-colourful tree L`C constructed (pre-

ceding Lemma 9.4.8) and given subset of colours Bv and a sequence t ≺ t1 ≺ ⋅ ⋅ ⋅ ≺ tp,

finding the smallest such node t
∗

, if one exists, that satisfies:

• t
∗
≻ t

• coloured with ⊥;

• ColourSet(t∗) ∩Bv = ∅;

• assuming t0 = t, there is some 0 ⩽ i < p such that t
∗
≻ t0, . . . , ti and the

parent of t
∗

is an ancestor of each of ti+1, . . . , tp;

takes time proportional to O(pk` lg k).

Proof. We use the following property of the constructed universal tree L`C . For any

node in the tree, if its colour is not ⊥, then it has a child coloured with ⊥. Moreover,

any element (ω1ci1 , . . . , ωmcij) coloured with ⊥, i.e., cij = ⊥ is larger than the above

node but cij ≠ ⊥.

Let t
′

be the largest common ancestor of vertices t1, . . . , tp. The following

are the exhaustive list of cases to consider.

• If t ≻ t
′
, we get can deduce from Proposition 9.2.4 that t1 is a strict descendant

of t which in turn is a strict is a descendent of t
′
. Here, if ColourSet(t′)∩Bv ≠ ∅,

then no such t
∗

exists. If on the other hand ColourSet(t′)∩Bv = ∅, then t
∗

is

the smallest child of t
′
that is larger than t coloured with ⊥. We remark that

such a t
∗

exists, because we can show by Proposition 9.2.4 that t is a strict

ancestor of t1.

• If t ⪯ t
′
and let t̂ be a common ancestor of t and t

′
. We list all the descendants

of t̂ that are also ancestors of the largest of the input vertices tp. Let these be

in order ∶ t̂ = t0 ≺ t1 ≺ ⋅ ⋅ ⋅ ≺ tq = tp.
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Since we want colour(t∗) ∩ Bv = ∅, we want colour(parent(t∗)) ∩ Bv = ∅.

Notice that the parent of t
∗

is among the sequence t
0
≺ t

1
≺ . . . ⋅ ⋅ ⋅ ≺ t

q
.

For each of these nodes t
j

among t
0
, t

1
. . . t

q−1
, in this order, we perform the

following checks:

– Is colour(tj)∩Bv = ∅? If not, we declare that no such t
∗

exists with any

other t
⩾j

as a parent.

– Find smallest child of t
j

coloured with ⊥. Except in the case of t
0
, where

we find smallest child of t
0

coloured with ⊥ and is larger than t, if one

exists. We declare it say t
j
∗.

– We return the smallest such t
i
∗ found.

This computation as shown above has three steps. Firstly, finding the least common

ancestor of p nodes. Secondly, we find next child of certain nodes coloured with ⊥.

Finally we take the minimum of at most k nodes. The first of these computations is

the costliest and takes time O(pk` log k). The next node that is coloured with ⊥ is

just a simple version of next
`
C defined for the tree, where C = ∅ and therefore can

be computed in time O(k` log k). We compare and take minimum of nodes, which

does not take more than time O(pk` log k) if we compute the minimum on-the-fly.

Moreover, since the vertices for which we are computing next is an increasing chain

of tuples, we can implement the above in time proportional to O(pk` log k). We

remark however that this runtime assumes that we compute the common ancestors

and required nodes once and store it for easy access to avoid an extra factor of p to

our computation costs.

10.4 Almost-sure winning stochastic Rabin games

Stochastic Rabin games are two player games with some added probabilistic states

introduced in the game. The game arena is still a (c0, C)-colourful Rabin graph.

However, the vertices are partitioned into three sets VA, VS and VR. The partition

VR intuitively corresponds to stochastic choices, where each edge is chosen uniformly

at random.

We say that a positional strategy σ is almost-surely winning if the measure

of all the paths in the Markov decision process G∣σ obtained satisfying the Rabin

condition is 1. Although maximising the exact probability of winning in a stochastic

Rabin game (maximising the measure of all paths obeying a strategy and satisfying

the Rabin condition) might require non-positional strategies, it was shown in the

work of Chatterjee, Henzinger and Jurdziński [CHJ05] for stochastic parity games,
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and later generalised in the work of Chatterjee, de Alfaro and Henzinger [CdAH05]

to stochastic Rabin games that positional strategies are enough for Steven to ensure

an almost-sure winning play (winning with probability 1). In their work, Chatterjee,

de Alfaro and Henzinger [CdAH05] gave constructions that modify any stochastic

Rabin game with at most n vertices into a Rabin game with O(n+ks) many vertices

where there are no vertices belonging to the random player, and the number of

colours remains the same.

Corollary 10.4.0.1. Deciding if Steven almost-surely wins a stochastic Rabin game

takes time

Õ (mnk2k! min{n2
k
,(

⌈lg n⌉ + k
k − 1

)})

and O(nk log n log k) space.

The proof of the above corollary follows from the fact that a stochastic Rabin

game can be turned into a Rabin game under strong transition fairness by declaring

the random player vertices in the first one as Audrey vertices in the second, and

turning all outgoing edges of random player vertices to live edges. The almost-sure

winning region of Steven in the first game is equivalent to the winning region of

Steven in the second.

We remark that a similar approach also gives a progress measure based al-

gorithm parameterised by trees also for fair parity games, defined analogously to

fair Rabin games. This was a model considered in the recent work of Sağlam and

Schmuck [SS23], where they modify McNaughton- Zielonka’s algorithm to solve

such games. Our result for fair Rabin games can also be adapted to solve fair parity

games using a progress measure algorithm by substituting our colourful universal

trees instead with Jurdziński-Lazić universal trees.

207



Chapter 11

Lower bounds for solving Rabin

games

Using our combinatorial construction of colourful universal trees, which accommo-

dates any colourful decompositions, we significantly reduced our running time as

well as state space complexity of algorithms to solve Rabin games in Chapter 9.

Our algorithm took time linear in k!
o(1)

and a polynomial in n whilst requiring only

Õ(nk) space. But one might wonder if this algorithm could be further improved,

with this dependence on k! reduced to at least a 2
k
. However, the work of Calude,

Jain, Khoussainov, Li, and Stephan [CJK
+

22] swiftly put an end to such hopes due

to their complexity lower bounds subject to Exponential Time Hypothesis (ETH,

the assumption that there exists δ > 0 such that 3SAT problem cannot be solved

in time O(2δn)) for Rabin games. They proved that assuming ETH, there are no

algorithms with running time 2
o(k log k) ⋅ nO(1)

for Rabin games, essentially giving a

negative answer to our question. This reduction provided by Calude et al. starts

with the Dominating Set problem and is rather involved.

We provide a simple reduction that reproves the tight complexity lower bound

for solving Rabin games that follows from the work of Calude et al. More precisely,

we prove that assuming ETH, there is no algorithm for this problem with running

time 2
o(k log k) ⋅ nO(1)

. The same lower bound for (the more general) Muller games

follows as a direct corollary. By a minor twist of our construction, we can also

reprove the lower bound for d-dimensional parity games reported by Calude et al.

These games were studied by Chatterjee, Henzinger and Piterman [CHP07], and

are a generalisation of parity games to different dimensions, therefore also known as

generalised parity games.

We believe that our reduction for Rabin games is significantly simpler and
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more transparent than that of Calude et al. but more importantly, it gives a better

insight into the origin of the 2
o(k log k)

factor in the complexity of the problem.

Analysing our algorithms from Chapter 9, this factor stems from considering all

possible permutations of the k colours involved in the winning condition. In our

reduction, those permutations form the space of potential solutions of a carefully

chosen pivot problem —Permutation SAT, a special case of a temporal constraint

satisfaction problem— which we discuss below.

Temporal CSPs and Permutation SAT. A constraint satisfaction problem

(CSP) is the problem of deciding if there exists a variable assignment that satisfies

a given set of constraints. Temporal problems is a rich family of CSPs that model

planning various events on a timeline. In a basic form, every variable corresponds

to an event that needs to be scheduled at some point of time and constraints speak

about some events being in specific order (e.g., one preceding another), at the same

time, or at different times. This is usually modelled with Q as the domain and con-

straints having access to predicates <, ⩽, =, and ≠. A P vs NP dichotomy for finite

languages within this formalism has been provided by Bodirsky and Kára [BK10].

Exponential Time Hypothesis. The Exponential Time Hypothesis is a com-

plexity assumption introduced by Impagliazzo, Paturi and Zane [IPZ01] that postu-

lates the following: there exists δ > 0 such that the 3-SAT problem cannot be solved

in time O(2δn), where n is the number of variables of the input formula. We refer

the reader to the book by Cygan et al. [CFK
+

15, Chapter 14] for an introduction

to the applications of ETH for lower bounds within parameterized complexity.

Generalised parity objective. Generalised parity games were first considered

in the work of Chatterjee, Henzinger, and Piterman [CHP07]. In a d-dimensional

k-parity condition, each vertex is labelled with a d-dimensional vector of integers

from {1, . . . , k}. An infinite play satisfies this objective for Steven if and only if

there is some coordinate such that the highest number that occurs infinitely often

at this coordinate is even. Audrey wins otherwise.

11.1 Permutation SAT

Fix integers α ⩾ 2 and β ⩾ 1 and let X be a finite set of real-valued variables.

An α-literal is a predicate of the form x1 < x2 < . . . < xα′ (being a shorthand for

(x1 < x2) ∧ (x2 < x3) ∧ . . . ∧ (xα′−1 < xα′)) for some 2 ⩽ α
′
⩽ α and variables
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x1, x2, . . . , xα′ belonging to X; a literal is a 2-literal (i.e., a predicate of the form

x1 < x2). An (α, β)-clause is a disjunction of at most β α-literals, and an (α, β)-

formula is a conjunction of (α, β)-literals. By β-clauses and β-formulas we mean

(2, β)-clauses and (2, β)-formulas, respectively.

If φ is a formula with variable set X, then for a permutation π of X we define

the satisfaction of (literals and clauses of) φ by π in the obvious manner. In the

(α, β)-Permutation SAT problem we are given an (α, β)-formula φ and the task

is to decide whether there exists a permutation of the variables of φ that satisfies φ.

β-Permutation SAT is a shorthand for (2, β)-Permutation SAT.

In this section we prove the following hardness result.

Theorem 11.1.1. Assuming ETH, there is no algorithm for 4-Permutation SAT

that would work in time 2
o(k log k) ⋅ nO(1)

, where k is the number of variables and n

is the number of clauses.

To prove Theorem 11.1.1 we use the problem k × k-Clique considered by

Lokshtanov, Marx, and Saurabh [LMS18]. They showed that, unless ETH fails, this

problem cannot be solved in 2
o(k log k)

-time. We first define k×k-Clique below, and

then reduce k × k-Clique to 4-Permutation SAT.

An instance of the k × k-Clique problem is an undirected graph G with the

vertex set {1, . . . , k}× {1, . . . , k} (that we can represent as a grid). This graph G is

a positive instance of k × k-Clique if there are k vertices chosen such that there is

exactly one vertex from each row of the grid that forms a k-clique, that is, a k-clique

in which no two vertices share the same first component.

Theorem 11.1.2 ([LMS18, Theorem 2.4]). Assuming ETH, there is no 2
o(k log k)

-

time algorithm for k × k-Clique.

The reduction. We now reduce k × k-Clique to 4-Permutation SAT. Let G
be an instance of k×k-Clique. Given G, we construct a 4-formula φG over variable

set X ≔ {x1, . . . , xk, xk+1, y1, . . . , yk} as follows

Recall that the vertices of the graph G are of the form (i, j) for i, j ∈

{1, . . . , k}. We say that vertex (i, j) is in the i
th

row and j
th

column. To con-

struct φG , we first write the following 3k many 1-clauses:

x1 < x2, x2 < x3, . . . , xk < xk+1,

x1 < y1, x1 < y2, . . . , x1 < yk

y1 < xk+1, y2 < xk+1, . . . , yk < xk+1
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Figure 11.1: The construction in Section 11.1.

The disjunction of these clauses ensures that in any permutation satisfying φG , the

variables x1, . . . , xk+1 are ordered exactly in this way, while variables y1, . . . , yk are

sandwiched between x1 and xk+1.

Next, we introduce clauses that restrict the placement of variables y1, . . . , yk

within the chain x1 < x2 < . . . < xk+1. The intention is the following: placing yi

between xj and xj+1 corresponds to choosing the vertex (i, j) to the clique. Hence, it

remains to introduce clauses ensuring that vertices chosen in this way in consecutive

rows are pairwise adjacent. To this end, for every pair (a, b), (c, d) of vertices non-

adjacent in G, we construct the 4-clause

(yb < xa) ∨ (xa+1 < yb) ∨ (yd < xc) ∨ (xc+1 < yd).

Note that logically, this 4-clause is equivalent to

¬ ((xa < yb < xa+1) ∧ (xc < yd < xc+1)) .

Thus, intuitively speaking, the 4-clause forbids simultaneously choosing (a, b) as

well as (c, d) to form a clique.

Consider the clique in Fig. 11.1. It corresponds to the permutation x1 < y4 <

x2 < y1 < y3 < x3 < x4 < y2 < x5 (with y1 and y3 possibly swapped). Note that

the vertex (2, 2) is not chosen in the clique. The dashed non-edge ((4, 3), (3, 4))
is disallowed by the clause ¬ ((x4 < y3 < x5) ∧ (x3 < y4 < x4)) which ensures if y4

appears between x3 and x4, then y3 does not appear between x4 and x5. This

concludes the construction of the formula φG . It remains to verify the correctness

of the reduction.

Lemma 11.1.3. The graph G admits a k-clique with one vertex from each row if

and only if φG is satisfiable.

Proof. First suppose G contains a k-clique K = {(1, b1), . . . , (k, bk)}. Consider any
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permutation π of X such that

• x1 < x2 < ⋅ ⋅ ⋅ < xk < xk+1, and

• xbi < yi < xbi+1, for all j ∈ {1, . . . , k}.

(Note that π is not defined uniquely, the relative placement of yi and yi′ can be

arbitrary whenever bi = bi′ .) It can be easily seen that K being a clique, implies

that all clauses in φG are satisfied. The 1-clauses are satisfied trivially, while every

4-clause constructed for a non-adjacent (b, a), (d, c) is satisfied because (b, a) and

(d, c) cannot simultaneously belong to K.

Suppose now that there is an ordering of X that satisfies φG . Clearly, it

must be the case that x1 < x2 < ⋅ ⋅ ⋅ < xk < xk+1. Further, for every i ∈ {1, . . . , k}
we have x1 < yi < xk+1, hence there exists ji such that xji < yi < xji+1. We let

K ≔ {(i, ji)∶ i ∈ {1, . . . , k}}; note that K contains one vertex from each row. We

claim that K is a clique in G. Indeed, since in φG there is a clause disallowing that

((xa < yb < xa+1) ∧ (xc < yd < xc+1)) whenever there is no edge between (a, b) and

(c, d), all vertices of K must be pairwise adjacent.

This concludes the proof of Theorem 11.1.1. We remark that establishing the

complexity of 2- and 3-Permutation SAT remains an interesting and challenging

open problem. Eriksson, in his MSc thesis [Eri19], shows that 2-Permutation SAT

can be solved in time ((k/2)!)2 ⋅(k+n)O(1)
, which gives roughly a 2

k/2
multiplicative

improvement over the naive algorithm.

11.2 Lower bound for Rabin games

Finally, in this section, we prove the main result of this chapter, stated as Theorem I

below.

Theorem I ([CJK
+

22]). Assuming the Exponential Time Hypothesis, there is

no algorithm that solves Rabin games with n vertices and with k colours in time

2
o(k log k) ⋅ nO(1)

.

As mentioned before, we reduce from 4-Permutation SAT.

The reduction. Let φ = C1∧C2∧⋅ ⋅ ⋅∧Cm be an instance of 4-Permutation SAT

over k variables {y1, . . . , yk}, where C1, . . . , Cm are 4-clauses. We construct a (c0, C)-
colourful game G for C = {c1, . . . , ck} such that there is a strategy for Steven iff φ

is satisfiable.
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Figure 11.2: The construction in Section 11.2.

We first define the game graph G; see Figure 11.2. There is an initial vertex

∆, as well as vertices [C1], . . . , [Cm], one for each of the m 4-clauses in φ. Further,

for each possible literal xi < xj , where i, j ∈ {1, . . . , k} and i ≠ j, there is a vertex

[xi < xj]. Vertex ∆ belongs to Audrey, while all other vertices belong to Steven.

The intention is that whenever Audrey moves the token currently placed at

∆, she chooses a clause that she wishes to see satisfied. To facilitate this, we add

edges ∆ → [C`] for all ` ∈ {1, . . . ,m}. Once the token is at a vertex [C`], Steven

needs to respond with a literal present in Ci; the intention is that should be a literal

true in Ci. Therefore, for every clause C` and literal xi < xj present in C`, we add

the edge [C`] → [xi < xj]. Finally, to allow Audrey checking further clauses, we

add edges back to ∆: for every literal xi < xj , there is an edge [xi < xj]→ ∆.

Next, we define the good and bad colours constituting the winning condition.

For each vertex v not of the form [xi < xj], we declare Gv as well as Bv to be empty,

but for vertices [xi < xj], we set

G[xi<xj] = {cj} and B[xi<xj] = {ci}.

Before we proceed to the formal verification of the correctness of the reduc-

tion, let us give some intuition. It is easy to see that, on the third turn, the token is

placed at the vertex ∆. At each such moment, Audrey, in turn, chooses to move the

token to any vertex corresponding to a clause C`, with the intention of challenging

Steven about the satisfaction of C`. Then Steven has to declare the literal that

satisfies C`. If Steven tries to “cheat” by picking literals that cannot be extended to

a full ordering of the variables, then the winning condition is designed so that the
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play will be losing for him. Consider the illustration in Fig. 11.2, where for example,

φ of 4-Permutation SAT which consists of m clauses such that the clause C3 is

(x1 < x4) ∨ (x2 < x1) ∨ (x2 < x3) ∨ (xn < x2) and C1 has clause (x1 < x2) only.

Vertices that have c1 or c2 as good colours are highlighted using blue and yellow,

respectively, and vertices with c1 or c2 colours as bad colours are again highlighted

using blue and yellow, but with wavy lines added. Suppose Steven picks the vertices

corresponding to the clause (x2 < x1) from C3 and (x1 < x2) from C1, then he loses

the game, since Audrey would ensure both vertices [x2 < x1] and [x1 < x2] are seen

infiniteley often. But observe that for both blue and red (c1 and c2), these vertices

have both the colours as bad colours.

Lemma 11.2.1. The instance φ of 4-Permutation SAT is satisfiable if and only

if Steven has a winning strategy in the constructed Rabin game.

Proof. First suppose φ is satisfiable, therefore consider a satisfying permutation π.

This gives rise to a (positional) winning strategy for Steven [EJ88, EJ99] such that

in this Steven strategy, for each vertex [C`], there is an edge to the vertex [xi < xj]
that corresponds to a literal of C` that is satisfied in permutation π. Consider now

any infinite play ρ for the game restricted to this strategy. Let L be the set of

literals visited infinitely often by ρ, and let imax be such that the variable ximax
has

the largest value in the permutation π among variables appearing in the literals of

L. We argue that ρ satisfies constructed the Rabin condition with the colour cimax

as a witness. This is because ρ visits [xi < ximax
] infinitely often (and therefore in

L) for some i, and the colour cimax
∈ G[xi<ximax], but for any vertex in v ∈ L, the

colour cimax
∉ Bv as ρ never visits any vertex [ximax

< xi] for any i (ximax
has the

largest value in the permutation).

Suppose now φ is not satisfiable. Then we need to show that for any po-

sitional strategy of Steven, Audrey can win with this strategy [EJ88, EJ99]. In-

deed, consider a fixed positional strategy of Steven: for each Steven vertex [C`]
the strategy contains an edge [C`] → [xa` < xb`] for some literal xa` < xb` ap-

pearing in C`. Since φ is not satisfiable, the set {xa` < xb`∶ ` ∈ [m]} of all se-

lected literals has a cycle. That is, there are variables xB1
, . . . , xBp

such that

literals xB1
< xB2

, xB2
< xB3

, . . . , xBp−1
< xBp

, xBp
< xB1

are among those se-

lected by Steven’s strategy. Observe now that for the fixed Steven’s positional

strategy, Audrey may play a strategy that repeatedly visits each of the vertices

[xB1
< xB2

], [xB2
< xB3

], . . . , [xBp−1
< xBp

], [xBp
< xB1

] in a cycle, so that these

are exactly the literal vertices visited infinitely often in the play. Then this play does

not satisfy the constructed Rabin condition, since for each colour ci ∈ {c1, . . . , ck},

one of the following happens. For i ∈ {B1, . . . , Bp}, the colour ci is a bad colour for
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[xBp
< xBi

] for p = i − 1 mod k + 1. If, on the other hand, i ∉ {B1, . . . , Bp}, then

colour ci ∉ Gv (or Bv) for any vertex in the above set of vertices is visited infinitely

often.

We end with the following corollary that claims that these lower-bound re-

sults also hold for Muller and generalised parity games.

Corollary 11.2.1.1. Assuming the Exponential Time Hypothesis, there is no algo-

rithm that solves

• Muller games k colours and n vertices,

• k-dimensional 3-parity games with n vertices, or

• 2-dimensional k-parity games

in time 2
o(k log k) ⋅ nO(1)

.

Using known reductions from Rabin games to Muller and k-dimensional 3-

parity games, we obtain similar lower bounds as a corollary. We finally conclude by

remarking that we can also extend our result to 2-dimensional k-parity games too.

Indeed, consider the following assignment of colours to the same game graph G: for

each vertex of the form [xj < xi], we assign the two-dimensional priority (2j+1, 2i)
if i < j and the priorities (2j, 2i+ 1) otherwise. The correctness of this reduction is

similar to that for Rabin games presented above, and hence we leave the verification

to the reader.
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Chapter 12

Discussions and directions

This thesis has explored the landscape of solving complex two-player games on

graphs, particularly those involving parity and Rabin objectives. Through a thor-

ough examination of the structural properties and the development of innovative

algorithms, we have made theoretical strides in solving such games.

The concept of attractor decomposition and the introduction of the Strahler

number have proven to be pivotal in this thesis for solving parity games. This

insight has laid the foundation for efficient algorithms for a range of parameters,

made possible by our construction of succinct Strahler universal trees.

Our contributions were extended further through the formulation of new

algorithms for solving parity games, which used a relaxation of attractor decom-

positions. Later, we solved Rabin games by extending the concept of attractor

decompositions to include colourful decompositions.

As we conclude, we are not only enhancing our understanding of parity and

Rabin games, but also offering valuable tools for addressing intricate challenges to

solve these games. To further propel this inquiry, we leave the reader with some

open ended discussions and questions to contemplate.

While we focus on the theoretical advancements throughout the thesis, an ob-

vious future direction is to implement these algorithms. Lehtinen and Boker [LB20]

had conjectured that parity games that arise in practice have small Strahler num-

bers. A natural question would be to verify their claim for parity games that arise

from real-life scenarios. As a first step, we remark that it can be deduced from the

work of Combes and Touati [CT20] that a randomly generated parity game (see

their paper for an exact definition of what randomly generated means) has Strahler

number 1.

Question I. Do parity games that arise from practical applications or those avail-
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able in standard benchmarks have a low Strahler number?

We have constructed several algorithms that exploit the structure of attractor

decompositions. Consequently, we believe that we should investigate the structure

of ordered trees that arise from the attractor decompositions of hard examples and

how they impact the intricate behaviour of our algorithms. With deeper insights, we

foresee the potential to fine-tune these algorithms to create exceptionally efficient

parity game solvers.

Question II. What do the trees of attractor decompositions of these games look

like? Are trees of attractor decompositions significantly smaller than the trees of

progress measure algorithms for games that arise in practice?

We also acknowledge that our symmetric algorithm can be less intuitive.

When the input trees are smaller than the trees of attractor decomposition in the

games, the sets returned may not provide complete information about the win-

ning players within those sets. This limitation extends to other symmetric quasi-

polynomial algorithms as well. Furthermore, in the context of synthesis, we ideally

would like strategies to be produced alongside a solution. Understanding the sets

returned by our algorithms better might lead to insights into how this algorithm

can be simplified or made efficient.

Question III. Can symmetric attractor-based algorithms, especially the quasi-poly-

nomial ones (including ours) be modified to produce strategies for one or both play-

ers?

Our algorithms for parity games are all parameterized by trees. It would be

productive to understand the performance of these algorithms better on different

families of parity games and for different universal trees. We do not have examples

of families of games on which our symmetric algorithm takes more than polynomial

time, even for our exponential version, which uses complete n-ary trees. A possi-

ble direction of research would be to show that our algorithm on complete trees

takes quasi-polynomial, or some sub-exponential time. Conversely, if we can in-

stead construct families of games for which this algorithm takes exponential time,

we could shed new light on the central question of overcoming the quasi-polynomial

barrier [CDF
+

19].

Question IV. Are there families of games for which our symmetric attractor-based

algorithm (Algorithm 8 or Algorithm 9) requires more than polynomial amount of

time?
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We developed the first polynomial space algorithm to solve Rabin games

that is also fixed-parameter tractable with respect to the number of colours. More-

over, for LTL synthesis, existing tools, such as Rabinizer 4 [KMSZ18], convert LTL

specifications to Rabin automata or parity automata. Analysing whether our algo-

rithms for solving the obtained Rabin games outperform the approach of converting

them to parity games and utilising our parity game algorithms or other parity game

algorithms would be a fruitful pursuit.

Question V. In practice, does our algorithm to solve Rabin games outperform the

approach of converting them to parity games and using our algorithms to solve parity

games?

Our algorithm for both Rabin and fair Rabin games, like other progress mea-

sure algorithms, can display worst-case behaviour in certain asymmetric examples.

To show that a vertex is losing for Steven, the measure needs to increase until it

reaches ⊤. This lack of symmetry might lead to worst-case behaviour. But circum-

venting this problem by constructing similar measures for Audrey in the hopes of

finding a symmetric algorithm is not as straightforward, as Audrey does not have a

positional strategy in this game.

Question VI. Are there algorithms that can solve Streett games and produce a

strategy for Steven in time and space requirements similar to our algorithm based

on colourful universal trees?

On another tangent, symbolic algorithms for parity games are implicitly or

explicitly guided by universal trees [Zie98, CDHS18, JMT22] constructed for both

players. We believe that with some effort, our small colourful universal trees can be

exploited to build symbolic algorithms that solve Rabin games or fair-Rabin games.

For instance, one could draw inspiration from the Jurdzińksi-Morvan algorithm for

parity games, combined with our construction of colourful universal trees. Indeed,

we already have a definition of colourful decompositions, which one might hope to

obtain as an end-result of such a recursive symbolic algorithm.

Question VII. Can we construct a symbolic algorithm that solves Rabin games

proportional to the size of our colourful universal trees?

One can also analyse parameters with respect to which Rabin games are

FPT. However, certain parameters have already been excluded—subject to condi-

tions like P ≠ NP or ETH—due to established lower bound results [EJ99, GLM
+

15],

including our own result in Chapter 11. These include tree-width (of the under-

lying undirected graph), entanglement, DAG-width and any other directed width
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measure, as the graph we produced has a constant value of all the above measures.

Some work has already been done towards this direction for parity games [Obd03,

Obd07, BDHK06, Gan15, Sta23], where such lower bound results do not hold. For

the most significant parameter—the number of colours in a Rabin game—we ask

if algorithms can potentially benefit (both theoretically and practically) with some

clever pre-processing. Modifying the input game graph or the acceptance condition

to significantly reduce a suitable parameter or even finding a restriction of the trees

necessary for lifting could lead to an improved performance of the algorithm. Re-

ducing the size of such trees from more than k! to a value closer to (k/2)! in such

cases is significant for practical algorithms. Indeed, 8! is comparable to the number

of words in this thesis, while 4! is closer to the number of words in the following

question.

Question VIII. Can we solve Rabin games with k colours and n vertices in time

that is polynomial in n and linear in (k/c)! for some constant c > 1?

Finally, we ask if we can extend our algorithms to solve games with a wider

range of objectives. Toward this step, we considered fair Rabin games in Chapter 10.

However, we can also ask the more general question of solving Muller games. It is

already known that algorithms that solve Muller games by converting them to parity

games that are fixed parameter tractable with respect to the number of colours. But,

as with Rabin games, we face an exponential blow-up in space required to solve these

games. Muller games are known to be PSPACE-complete [HD05] and algorithms that

run in polynomial space are known [McN93].

Question IX. Can we construct a polynomial-space algorithm that solves Muller

games or Emerson-Lei games [EL86] in time that is FPT with respect to the number

of colours?

With these open avenues of thought, we hope to spur future investigations

that will shape the trajectory of algorithms that solve parity and Rabin games faster

in theory and practice.
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P. Parys. Universal trees grow inside separating automata: Quasi-

polynomial lower bounds for parity games. In Proceedings of the Thir-

tieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2019, San Diego, California, USA, January 6-9, 2019, pages 2333–

2349. SIAM, 2019. (Cited on pages 6, 25, 43, 59, 60, 72, 74, 176, 176,

217).
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