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Abstract

In this thesis, we consider the computational problem of deciding the winner
in two player games on finite graphs with parity and Rabin objectives. Solving
these games is a fundamental problem with applications to program verification,
and synthesis, and it is closely linked to problems in automata theory and logic.
We focus on understanding the structural properties of these games and devising
algorithms that harness these properties.

At the core of this thesis is the concept of an attractor decomposition, a
structured representation of a parity game that serves as a witness of winning for
a player and that naturally corresponds to a tree. It has been established that
universal trees—trees capable of embedding all possible trees emerging from an
input parity game—play a pivotal role in serving as a search space for all known
algorithms designed to solve parity games.

We define the Strahler number of a parity game as the smallest Strahler
number of the tree of its attractor decomposition, and we establish that it functions
as a robust and intuitive parameter. This concept propels us to construct succinct
Strahler universal trees, enabling polynomial-time solutions for a wider range of
parameter settings in parity games.

Through a relaxation of attractor decompositions that we call “decomposi-
tions,” we formulate three novel algorithms for solving parity games. Our algorithms
either boast a simpler description or faster runtime complexity in comparison to their
predecessors, and they are designed to be easily adaptable to various universal trees,
including our Strahler universal trees.

Finally, we extend the concept of attractor decompositions to “colourful de-
compositions,” identified as witnesses of winning for Rabin games. The colourful
trees that stem from colourful decompositions lead us to construct succinct colour-
ful universal trees. This construction yields an algorithm which is an exponential
improvement in space complexity and an exponential factor improvement in time
complexity compared to other state-of-the-art algorithms.

X
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Chapter 1

Introduction

Parity games. Parity games are two-player games played between Steven and
Audrey on directed graphs, in which the ownership of these vertices is divided
between the two players. The graphs on which these games are played are equipped
with a natural number assigned to each vertex, called its priority. A token is placed
at a designated start vertex. At each step, the owner of the vertex on which the
token is currently placed chooses an outgoing edge. The token is then moved along
the edge to the next vertex. The game proceeds for an infinite duration, creating
a play: a countably infinite sequence of vertices seen by the token. Steven wins in
a parity game if he can ensure, by choosing his edges appropriately, that for any
play in the game, the highest priority visited infinitely often is even. Audrey wins

otherwise.

Rabin games. Rabin games, like parity games, are also two-player games played
on directed graphs, where each vertex is owned by one of Steven or Audrey. Each
Rabin game has a finite set of colours. From this set of colours, for each vertex of
the graph, a subset of the set of colours is assigned as its good colours and a subset
of the set of colours is assigned as its bad colours. A token is placed on a designated
start vertex, and the game proceeds similarly to that of a parity game, where the
token is moved by the players along the edges, forming a play. Steven wins in a
Rabin game if he can ensure that amongst the vertices that are visited infinitely
often in a play, there is some colour that is a good colour for at least one vertex and

is not a bad colour for any of these vertices.



1.1 The landscape

Parity and Rabin games have been studied since the late 1980s and they are ar-
guably a fundamental model in automata theory and logic [EJ8S| [EJ91) [Zie98,
GTWO02, BW18]. Applications of algorithms that solve such games include veri-
fication, program analysis, and synthesis. In particular, they are intimately linked
to the problems of emptiness and complementation of non-deterministic automata
on trees [EJ91), [Zie98], model checking and satisfiability of fixpoint logics [EJS93,
BW1§], fair simulation relations [EWS01] and evaluation of nested fixpoint expres-
sions [LBCJr947 BKMMP19, HS19]. Furthermore, Rabin conditions are suitable
specifications for general fairness constraints [FK84] or to prove program termina-

tion under such constraints [KK91].

Automata and Logic. Automata, logic and games are inherently tied together
with threads of expressivity and decidability results. The emptiness of tree automata
or alternating automata with a parity or Rabin condition can be decided by solving
parity or Rabin games derived directly from such automata. Moreover, the most
effective translations from alternating parity or Rabin automata on infinite words
to alternating weak automata have been inspired by algorithms for parity or Rabin
games, respectively [KV98, BL19, DJL19].

The close connection between logic and automata has been explored since
the 1960s [Bii62, Rab69]. We focus mainly on the modal p-calculus here to high-
light the connection of automata and games to logic. The modal p-calculus has
gained traction in the community since its introduction by Kozen [Koz83]. In terms
of expressivity, this logic subsumes well-studied logics such as LTL [Pnu77] and
CTL [CES81] (which are incomparable to each other in terms of their expressivity).
It also subsumes the logic CTL* [EHS86], which already subsumes both LTL and
CTL.

Rabin showed that the Monadic Second Order logic (MSO) with n suc-
cessors (SnS) is equi-expressive as Rabin tree automata [Rab69]. The result of
Niwinski [Niw88| Niw97], followed by the work of Emerson and Jutla [EJ91], showed
a tight (effectively translatable) equivalence in expressivity between the modal p-
calculus and parity tree automata.

Decision problems over the modal p-calculus reduce to problems in automata
theory and game theory [Str81, [EJ91, [MS95]. More specifically, the problem of
checking if a Kripke structure is accepted by a given p-calculus formula, also known
as the model checking problem of modal p-calculus, directly reduces to acceptance

of a word by an alternating parity automata or, equivalently, deciding the winner



of a parity game [EJ91]. The problem of checking if a formula is satisfiable also
reduces to the emptiness checking of non-deterministic Rabin automata on trees,
or solving a parity or Rabin games thus obtained, but these reductions are rooted
in fundamental results in automata theory [EJ91) [Saf88, [MS95]. This satisfiability
problem is decidable and is also known to be EXPTIME-complete [SES9, [EJ99].
For a more thorough view on modal p-calculus and its relation to automata
theory and games, we refer to the survey by Wilke [Wil01], and also a more recent

survey by Hausmann and Piterman [HP22].

Model checking and Synthesis. The game-theoretic approach to system ver-
ification uses the theory of two player games on graphs to tackle verification and
synthesis of systems, studied since the 1980s [CES1],[QS83]. We give a brief overview
on the interplay between the two player games we study and the areas of model

checking and synthesis.

Model Checking. The model checking problem asks if one can construct
machines that can, given a model and a specification, verify if the executions of
this model satisfy the given specification. These specifications are usually expressed
using temporal logical formulas. For our purposes, we limit our discussion to the
model checking problem of modal p-calculus, which asks if a given Kripke struc-
ture (labelled transition system) satisfies the properties expressed by a p-calculus
formula. As elaborated upon in our brief discussion on logic and games, the model
checking problem reduces to the problem of solving parity games [EJ91]. Emerson,
Jutla, and Sistla further showed that the model checking problem can be reduced to
the non-emptiness problem of parity tree automata [EJS93|. It is also known that
the model checking problem reduces to solving a system of nested-fizpoint equa-
tions [LBC 94, Sei96, BWIS]. The observation that model checking of modal -
calculus can be done symbolically [McM93]| is key to several industrial-scale model
checkers [Wil01].

Synthesis. Posed by Church [Chu57] in the late 50s, the problem of syn-
thesis asks if a reactive system can be automatically constructed from a logical
specification. Due to the underlying connections between logic and games, the syn-
thesis problem for several logics reduces to solving two-player games [BL69]. The
synthesis problem, when the specification is given in LTL, is solved by converting
such specifications into two-player games where the objective is assessed using a non-

deterministic Bilichi automaton over infinite words. These Biichi automata must be



determinised either to parity automata or Rabin automata [McNGG6, [Saf88], MS95].
The solution to parity or Rabin games thus obtained effectively synthesises a con-
troller.

The tree-automata based approach to synthesis was championed by Pneuli
and Rosner [PR89] who showed 2-EXPTIME-completeness for LTL synthesis. De-
spite its discouraging complexity status, the problem of LTL synthesis is, in com-
parison, significantly more tractable than S1S synthesis (Monadic Second Order
logic with one successor), which is non-elementary [Sto74]. We remark that the
doubly exponential algorithm of Pneuli and Rosner was obtained by solving Rabin
games. Fragments of LTL have also been considered while solving the synthesis
problem, such as GR(1) (Generalised Reactivity (1)) proposed by Piterman, Pnueli,
and Sa’ar [PPS06] for which the time taken by the synthesis problem is bounded by
a single exponent.

Bloem, Chatterjee, and Jobstmann [BCJ18|] provide a thorough overview of

reactive synthesis where we redirect the curious reader.

Complexity status. The problem of deciding the winner of a parity game is
in NP n coNP. It was also shown to be in the complexity class UP n coUP by
Jurdzinski [Jur98]. The search version of the problem of finding strategies in a parity
game for both players is in CLS [DP11], and therefore also in the complexity classes
PPAD and PLS which contain CLS (see work of Fearnley et al. [FGHS21], for recent
breakthrough result showing PPAD N PLS = CLS). Rabin games, on the other hand,
have been established to be NP complete in the work of Emerson and Jutla [EJ8g].
The recent breakthrough of Calude, Jain, Khoussainov, Li, and Stephan [C.JK" 22
showed that both parity and Rabin games are in FPT (fixed parameter tractable) for
the parameter being the number of priorities or the number of colours, respectively.

However, it has been open for over three decades whether solving parity games is in
P.

Algorithmic efforts. For parity games and Rabin games, we use n to refer to
the number of vertices and m the number of edges of the underlying graph on which
these games are played. We use d to denote the number of distinct priorities in a

parity game and k to denote the number of colours in a Rabin game.

Parity games. In their seminal work, Emerson and Jutla [EJ91] demon-
strated the existence of positional winning strategies for both players in parity games.

McNaughton [McN93|, drawing inspiration from the contributions of Gurevich and



Harrington |[GHS82|, as well as Yakhnis and Yakhnis [YY90], presented a recur-
sive algorithm in his work to tackle a more general class of games, called Muller
games. Building upon this foundation, Zielonka adapted McNaughton’s algorithm,

not only presenting an alternative proof of existence of positional winning strategies
n

d
d) ) to solve parity

but also producing an algorithm with a running time of (’)((

n

d
Browne, Clarke, Jha, and Marrero [LBC 94| and later simplified by Seidl [Sei96]

to solve model checking of modal p-calclus—also known to be equivalent to solv-

dj2
games. An exponential space and O(( ) / ) time algorithm was given by Long,

ing parity games. Soon after, Jurdzinski [Jur00] gave a small progress measure
algorithm, which assigns a measure to the underlying game graph such that this

measure is non-increasing along an edge in a play. This algorithm took time propor-
df2
tional to O((%) / ), reducing the runtime by half in the exponent when compared

to the McNaughton-Zielonka algorithm while maintaining closely its space com-
plexity. Subsequently, Jurdzinski, Paterson, and Zwick, using pre-processing that
removed winning sets of fixed sizes, brought down the running time of the modified
McNaughton-Zielonka algorithm to no( Vnllogn) [JPZ08§]. Theirs was the first deter-
ministic sub-exponential algorithm to match the expected runtime of the randomised
algorithm to solve parity games by Bjérklund, Sandberg and Vorobyov [BSV03]. In-
spired by this, Schewe [SE07, [Sch17] gave an algorithm with the running time in

d/3+0.5
(’)((d%) s+ ) For values of n and d where d € (’)(\/n/ log n), this algorithm out-
performed the sub-exponential algorithm of Jurdzinski, Paterson and Zwick, but
theirs remained the state of the art for cases where d was asymptotically compara-

ble to n.

Quasi-polynomial algorithms. A major breakthrough for algorithms to
solve parity games came recently in 2017 when Calude, Jain, Khoussainov, Li and
Stephan [CJK+17, CJK+22} provided a quasi-polynomial solution, along with a
O(nlogd+6) upper bound of its running time. An algorithm is said to take quasi-
polynomial running time if there is some constant ¢ such that the running time of
the algorithms is bounded by no(logcn). This spurred research in parity games, lead-
ing to several illuminating results [GI17, [BC17]. Following the algorithm of Calude
et al., two independent algorithms emerged with significantly improved space com-
plexity and closely matching runtime complexity. Jurdzinski and Lazié’s succinct
progress measure algorithm [JLI7] reinterpreted Jurdziriski’s small progress mea-
sure algorithm [Jur00] and encoded them succinctly. On the other hand, Fearnley,
Jain, de Keijzer, Schewe, and Stephan’s [FJdKJr19] algorithm modified Calude et



al.’s algorithm to significantly reduce the space complexity. The running time of the
algorithm of Jurdzinski and Lazic is (’)(max { 9O(dlog d), O(mn2'38) }) and it requires
only quasi-linear space. The one by Fearnley et al. is also comparable in its runtime
and space complexity. A closer modification resulted in a slight improvement was
further obtained by Dell’Erba and Schewe using a modification of progress measures
of Fearnley et al [DS22].

Subsequently, a pioneering new approach emerged in the form of Lehtinen’s
work, wherein she introduced a parameter, the “register number,” aimed at solv-
ing parity games in quasi-polynomial time [Lehl8, [LB20] and in polynomial time
when register number is bounded by a constant. However, the running time of the
algorithm is bounded by (’)(nde), where k is the register number of a parity game,
which does not exceed lg(n) + 1. Inspired by Bojanczyk and Czerwinski’s [BC17]
interpretation of the algortihm of Calude et al., Czerwinski, Daviaud, Fijalkow, Jur-
dziriski, Lazi¢, and Parys [CDF"19] exhibited a combinatorial structure of universal
trees, provably underlying the techniques of Calude et al., of Jurdzinski and Lazi¢,
and of Lehtinen. An (n, h)-universal tree is an ordered tree that can embed in it any
tree with at most n leaves and height h. Their results concluded that any algorithm
that constructs a safety automaton whose accepting words work as a (specific kind
of) separator, implicitly contains an (n,d/2)-universal tree. A separator is an au-
tomaton whose language separates the languages of words encoding plays that are
(decisively) won by either Steven or Audrey in a parity game with n vertices and
d priorities. Moreover, they showed that any (n,d/2)-universal tree must have size
at least quasi-polynomial, thus providing evidence that the techniques developed in
these papers may be insufficient for leading to further improvements in the complex-
ity of solving parity games. However, we remark that such a combinatorial structure
displayed underlying Lehtinen’s algorithm does not have the same flavour as the
other lower bound results. Indeed, her algorithm produces non-deterministic parity
automata as separating automata as opposed to a deterministic safety automata
of the others. The lower bound is obtained indirectly by arguing that the safety
automaton derived from a non-determinisitc parity automaton with some good-for-
separation properties has the lower bound induced by universal trees. Parys [Par20]
later explained that this was sufficient, since the separators produced by Lehtinen’s
algorithm are what he called suitable-for-parity-games separators. He also gave an
improved version of Lehtinen’s algorithm. However, in his quest to achieve this
improvement, he modified the definition of a register game to consider only posi-
tional strategies. Although his modified algorithm did have an improved running

time compared to Lehtinen’s algorithm, the state-space complexity still remained



quasi-polynomial, as opposed to state-of-the-art algorithms.

Focus soon shifted towards attractor-based algorithms since these lower bound
techniques did not immediately seem applicable there. Attractors are the set of
vertices from which one player has a reachability strategy to visit a target set of
vertices. Algorithms that compute attractors include the McNaughton-Zielonka al-
gorithm, which uses computing attractors as a primitive operation to find winning
sets in the game. Parys [Parl9] proposed an ingenious quasi-polynomial version
of McNaughton-Zielonka algorithm, but Lehtinen, Schewe, and Wojtczak [LSW19],
and Jurdzinski and Morvan [JM20, [IMT22] have again strongly linked all quasi-
polynomial variants of these attractor-based algorithm to universal trees.

The work on universal trees has inspired several different directions of re-
search. Motivated by the work of Czerwinski et al., an alternate formulation in terms
of universal graphs was proposed, originally by Colcombet and Fijalkow [CF19],
which has led to faster algorithms for mean-payoff games in the work of Colcombet,
Fijalkow, Gawrychowski, and Ohlmann [FGO20, [CFGO22]. The universal graphs
perspective has also enabled a clear characterisation of the objectives for games on
infinite graphs that have positional strategies, as demonstrated by Ohlmann [Ohl22].
Using these universal graphs and universal trees, algorithms to solve nested fixpoints
have also evolved [HS19, [ANP21]. In terms of automata theory, the most optimal
translation of alternating parity automata on infinite words to alternating weak

automata also uses the theory of universal trees [DJLI19].

Rabin games. The problem of solving Rabin games was shown to be NP-
complete by Emerson and Jutla [EJ88, [EJ99] in the late 80s. In the same paper,
Emerson and Jutla, and independently, Pnueli and Rosner [PR89], gave algorithms
whose running times are O((nk)gk) time, where n is the number of vertices of
the game graph and k the number of colours. Algorithms to solve Rabin games
have been tied intimately to algorithms that solve parity games. The arrival of the
McNaughton-Zielonka [McN93| [Zie98] algorithm meant that the fastest way to solve
Rabin games was to convert them to a parity game using Latest Appearance Record
(LAR) techniques |[GH82] and then to use algorithms that solved parity games. But
this changed within the decade when Kupferman and Vardi [KV9§| reduced the
cubic dependence on n® to a quadratic one by showing that the non-emptiness
of a Rabin tree automaton can be established in time (’)(mn%k!). Zielonka’s al-
gorithm works for more general conditions, which include Rabin conditions. His
algorithm for Rabin games, in fact, runs in comparable time to the algorithm of

Kupferman and Vardi. However, its running time was precisely established later by



Jurdzinski [Jur00] to be O(mn% /([ 2)k) Much later, Horn [Hor05] gave a differ-
ent solution to solve Streett games (players’ objectives are the opposite of that in
Rabin games) with the same running time as Kupferman and Vardi’s algorithm.

Inspired by the (then) fastest algorithm for parity games—the small progress
measure algorithm by Jurdzinski [JurO0]—Piterman and Pnueli [PP06] gave an
O(mnk+1kk!)—time, O(nk)-space algorithm to solve Rabin games, again improving
algorithms that solve Rabin games by a factor of n".

The work of Piterman and Pnueli remained state-of-the-art for Rabin games
until the quasi-polynomial breakthrough for parity games by Calude, Jain, Khous-
sainov, Li, and Stephan [CJK"22]. The FPT algorithm of Calude et al. that solved
parity games also gave an FPT algorithm for Rabin games where the parameter
is the number of colours, as discussed briefly in their work. Converting a Rabin
game to a parity game that preserves the winner leads to an exponentially large
parity game with an increase in the number of vertices by a factor of k! [GHS82].
Nonetheless, we can solve Rabin games with n vertices, m edges, and k colours
in time O(nmk!2+o(1)) and (’)(nk:!1+0(1)) space, by solving this exponentially large
parity game obtained using state-of-the-art algorithms [JLI7, [F.J dK+19J. This exact
running time stems from using results in the work of Jurdzinski and Lazié¢, or Fearn-
ley et al., who reported a comprehensive analysis of the running time complexity of
their algorithm for parity games across various parameter settings. However, it is
important to note that the space requirements of all these FPT algorithms discussed

so far are exponential.

Practical efforts. With a range of algorithms available to solve parity games,
there have also been several implementations of these algorithms [BLV96, HKLN12,
dAF07, BDMI18|. While most implementations were sequential, there are now
several multi-core implementations [vWO08| vdB10, [Feal7] designed to solve parity
games, which make better use of machines with large memories and many CPUs.
However, dissatisfaction with the availability of practical implementations
that match the theoretical advancements in solving parity games prompted Fried-
mann and Lange [FL0O9] to introduce a platform called PGSOLVER. This platform
implemented several algorithms, facilitating comparisons among them across various
families of parity games. In a bid to promote tools for addressing synthesis-related
problems, SYNTCOMP, a synthesis competition was inaugurated in 2018 [JPA™22].
Originally featuring three distinct tracks, each with specific synthesis specifica-
tions. Consequently, several tools emerged for solving parity games, including
STRIX developed by Meyer, Sickert and Luttenberger [MSL18, [LMSI1§] and Oink



by van Dijk [vD18, IMSL18]. Notably, STRIX, which has consistently won the
main SYNTCOMP competition from 2018 to 2021, uses parity game solvers to aid

its LTL synthesis. Since 2021, there has been a dedicated track for parity game
solvers [JPA™22].

1.2 Our contributions at a glance

A roadmap. This thesis consists of three parts, each part further contains three
chapters.

Chapter [2] serves as a repository of definitions and algorithms, which we
invoke throughout this thesis.

In Part[l} comprising of Chapters[3|to[5] we understand the structure of parity
games better in two ways. Initially, we tackle parity games that arise from nested
fixpoint equations (Chapter [3) and provide algorithms to solve such games. Later,
and more importantly, we define a fundamental parameter for parity games that we
call the Strahler number of a parity game (Chapter [4)), pivotal for characterising
the games’ intrinsic structure. We further show a combinatorial construction of
Strahler universal trees which allow existing algorithms to solve parity games faster
for various settings of different parameters, where one such parameter is its Strahler
number (Chapter |5)).

In Part [[T, which spans Chapters [6] to 8, we engineer three different algo-
rithms: a strategy iteration algorithm (Chapter @, an asymmetric attractor-based
algorithm (Chapter [7) and a symmetric attractor-based algorithm (Chapter [8) to
solve parity games. These algorithms are easily parameterized to run on any uni-
versal trees—the fundamental combinatorial object underlying all known algorithms
that solve parity games.

Finally, in Part [T, which includes Chapters [9] to we give improved al-
gorithms to solve Rabin games (Chapter @ We extend our algorithm to also solve
Rabin games with additional fairness constraints imposed on the opponent Audrey
(Chapter . We show an alternate proof that our algorithms for Rabin games
and their variations are optimal, conditional on the Exponential Time Hypothesis
(Chapter [11)).

Subsequently in this chapter, we provide an intuitive overview of the attractor
decomposition in a parity game and the associated trees. Using this understanding,

we summarise the most important results of each chapter.



What are attractor decompositions? A Steven dominion is a subset of ver-
tices of a parity game where Steven (has a strategy that) can ensure that all plays
(that use this strategy) remain within this subset of vertices and are simultaneously
winning for him. Every Steven dominion has a hierarchical subdivision of the set of
vertices that is a structured encoding of a winning strategy for him. We call such
subdivisions an attractor decomposition. Attractor decompositions are underlying
in the work of McNaughton and of Zielonka [McN93, [Zie98], and their connection
to ordered trees has been made explicit in several works [DJLI8| [DJL19, [JMT22].
Consider a parity game where the entire set of vertices is a Steven dominion
and the priorities are assigned from the set {1,2}. We know that a winning strategy
of Steven must ensure that all plays visit the set of vertices of priority 2 infinitely
often. Thus, every time he is at a vertex of priority 1, Steven’s winning strategy
ensures that he visits a vertex of priority 2. Therefore, the vertices of the game can
be partitioned into two sets: vertices of priority 2 and vertices from which Steven

can visit these “high” priority vertices within finitely many steps.

If we allow the range of priorities to extend from the set {1,2} to {1,2,3} whilst
still maintaining the condition that Steven is guaranteed to win from everywhere,
Steven’s strategies become more involved. Steven’s winning strategy would enable
him to partition the set of all vertices into “blocks,” where within each block, the
priority of the vertices is at most 2. Furthermore, in each block, he can employ
his earlier format for winning, which is a strategy that leads the play to the set of
vertices of priority 2 within that block. But such blocks can be arranged in order,
with vertices of priority 3 (or lower) interspersed between such {1, 2}-blocks. Outside
the {1,2}-blocks, Steven’s strategy would be to enter any {1,2}-block arranged to
the left. This way, Steven visits these vertices of priority 3 only in a transient fashion

between these blocks, thereby seeing vertices of priority 3 only finitely often.

23>2 332

AL

Further extending the range of priorities to {1,2,3,4} now alters the format of

w

Steven’s strategy as follows. If he can visit a vertex among the set of vertices of
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priority 4, he does that. If not, then again follows a strategy similar to when the
priorities were assigned from the set {1,2,3}. However, Steven can now visit these
vertices of priority 3 multiple times, but between two such visits to the same vertex
of priority 3, his strategy would ensure that he visits a priority 4. This strategy
enables the game to be partitioned into vertices that can reach a priority 4 vertex
in a finite number of steps, while the remaining part of the game consists of vertices
with priorities in the set {1,2,3}. This remaining part of the game, in turn, can
be subdivided, as discussed previously, with blocks of priority {1,2} and blocks of

priority {1, 2,3}, arranged linearly and alternating between the two.

d)edid
1 5\1 221 1

This recursive decomposition can be extended to parity games of arbitrary

w

priorities by decomposing the game in a similar manner recursively. Since strategies
ensuring that Steven visits a fixed set of vertices are widely known as his attractor
strategies, such decompositions of the games are termed attractor decompositions.
These attractor decompositions are defined in a hierarchical manner and naturally
correspond to trees. For example, the tree arising from the attractor decomposition
represented above would be a tree of height one and with three leaves. If we had
priorities from the set {1,...,d}, then the associated tree would have height not
more than |d/2]. The observation that some of these partitions need to be non-
empty, enforces that these trees have at most as many leaves as there are vertices
in the game.

For a tree 7, a Steven dominion of a parity game is said to have a Steven
T-attractor decomposition if it has an attractor decomposition whose tree can be
embedded in T. A parity game has a Steven T-attractor decomposition if the set
of all vertices from which Steven can win—the largest Steven dominion—has a 7T -
attractor decomposition in the game. Since the tree of an attractor decomposition
of a parity game with n vertices and d distinct priorities would have no more than
n leaves and height d/2, such a parity game would therefore also have a T-attractor
decomposition where T is an (n, d/2)-universal tree—a tree that can embed all trees
with n leaves and height d/2.

11



Part I

Part [[[s first chapter is Chapter [3, where we propose an algorithm that extends what
was called the wuniversal algorithm in the work of Jurdziriski and Morvan [JM20].
We will refer to their algorithm as the Jurdzinski-Morvan algorithm. We extend
their algorithm, which originally was to solve parity games, to also solve nested
fixpoint equations (thus making it even more universall). We do so by using a
characterisation of nested fixpoint equations over complete lattices called fixpoint
games [BKMMPI9| Ven08]. A system of nested fixpoint equations consists of d

fixpoint equations, for ¢ in {1,...,d}, each of the form
XZ' =n; fi(Xla s 7Xd)7

where each 7); corresponds to the least or greatest fixpoint operator. A nested fix-
point equation can be converted to a nested fixpoint game, which is an exponentially
large parity game. For equations over a powerset lattice of an n element set and
with an alternation depth d in the system of equations, these parity games contain
(’)(ndQ"d) many vertices and d distinct priorities. The winning vertices of Steven in
a nested fixpoint game exactly identify the solution to the nested fixpoint equation
from which this game arose. We show that although these parity games have ex-
ponentially many vertices, attractor-based algorithms can be modified to also work
for nested fixpoint games, whilst keeping track of only polynomially many of the
vertices of the fixpoint game at any given point of the algorithm.

We identify specific kinds of subgames of the fixpoint game and call these
flowery subgames. We also show that attractors computed during the algorithm
result in (specific kinds of) flowery subgames, and these subgames can also be com-
plemented to result in flowery subgames within the algorithm. Moreover, flowery
subgames can be represented succinctly. Since flowery subgames are sufficient to
capture all subgames that arise during the computations in the Jurdzinski-Morvan
algorithm, this gives us a natural way to tweak their symmetric attractor-based al-
gorithm to solve nested fixpoint equation over the powerset lattice. The Jurdzinski-
Morvan algorithms’s recursive calls are dictated by two trees, and the correctness
is guaranteed when these are both (n,d/2)-universal trees. Similar guarantees hold

for the modified version that solves nested fixpoint games.

Theorem A. The modified Jurdzinski-Morvan algorithm that computes nested fiz-
point equations takes quasi-polynomial time and polynomial space, when the under-

lying trees are quasi-polynomial sized universal trees.

The rest of Part [[] is dedicated to our novel and arguably fundamental pa-
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rameter of parity games, which we call the Strahler number. The Strahler number
of a rooted tree is the largest height of a perfect binary tree that is its minor. We
define the Strahler number of a parity game as the smallest of the Strahler numbers
of the trees T, such that the game has a T-attractor decomposition.

Lehtinen’s algorithm has avoided a tree based characterisation as it did not
produce safety separating automata and instead produced parity separating au-
tomata. In her work, Lehtinen introduced the register number, a parameter of a
parity game. We show in Theorem |B|that the Lehtinen number (which differs by at
most 1 from the register number of a parity game) is exactly equal to the Strahler
number of a parity game. The easier direction of proving that the Strahler num-
ber (of progress measures) bounds the Lehtinen number appears in the author’s
master’s thesis [Thel9], and the question of whether these two values coincide was
left open there. Chapter 4] introduces our definition of the Strahler number of a
parity game. We demonstrate its connection to the Lehtinen number and provide a
technical proof by constructing an attractor decomposition that shows the Strahler

number is at most the register number.
Theorem B. The Strahler number of a parity game is equal to its Lehtinen number.

Recall that Lehtinen’s algorithm required quasi-polynomial space and the
runtime of her algorithm, although quasi-polynomial, did not match the state-of-
the-art algorithms such as the ones by Jurdzinski and Lazi¢. The concerns about
the space requirements were also not resolved in the follow-up work of Parys [Par20].
We produce an algorithm which reduces the runtime of algorithms that solve parity
games of a fixed Lehtinen number—or equivalently, the Strahler number—to match
the state of the art. We define k-Strahler (n,h)-universal trees to be trees that
can embed any ordered tree with n leaves, height h, and Strahler number k. Any
(n,d)-small parity game whose Strahler number is at most k, can be solved by
modifying the progress measure algorithm of Jurdzinski and Lazi¢ to instead run
on Strahler universal trees. We construct optimal k-Strahler (n,h)-universal trees
which ensures that the running time of our algorithm for solving parity games yields

a novel trade-off
k-lg(d/k) = O(logn)

between the two natural parameters that measure the structural complexity of a
parity game, which allows solving parity games in polynomial time. This includes
as special cases the asymptotic settings of those parameters covered by the re-
sults of Calude, Jain, Khoussainov, Li, and Stephan [CJK+22], of Jurdzinski and
Lazié¢ [JL17], and of Lehtinen and Boker [LB20], and it significantly extends the
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range of such settings, for example to d = QO(VIOgn) and k = O(\/log n)

Theorem C. There is an algorithm for solving parity games with n vertices, d
priorities, and of Strahler number k in quasi-linear space and time n°W. (d/2k)k =
nklg(d/k)/lgnJro(l), which is polynomial in n if k -1g(d/k) = O(logn).

Part 1II

Having constructed small Strahler universal trees, we engineer algorithms in Part [[I]
to solve parity games that exploit the existence of these small trees.

We produce three different algorithms. A strategy iteration algorithm (Chap-
ter @, an asymmetric algorithm that produces an attractor decomposition for one
player (Chapter 7)), and finally, a symmetric algorithm that recursively solves games
for both players symmetrically and exploits the progress made in a recursive subcall
for one player to aid the other player (Chapter .

The underlying concept that is used for each of these algorithms is that
of a decomposition of a parity game. Decompositions are a relaxation of attractor
decompositions endowed with a partial order among them. Each of these algorithms
take time that is linear in the size of the tree and at most polynomial space. Plugging
in our succinct Strahler universal or the universal trees in the work of Jurdzinski

and Lazi¢, we ensure that these algorithms are comparable to the state of the art.

Strategy iteration. Strategy improvement algorithms form a class of al-
gorithms used to solve two-player games with positional winning strategies [How60),
VJ00, Lut08, [Sch08]. Usually, strategy improvement algorithms start from an arbi-
trary positional strategy for one player. These algorithms use an underlying valu-
ation that evaluates how good each strategy is. The strategies are then improved
based on this valuation until an optimal strategy is found. Although strategy im-
provement algorithms can take exponential time in theory [Fri09, [Feal()], in practice,
they terminate very quickly. Koh and Loho [KL22] gave a new take on strategy im-
provement algorithms, which we refer to as strategy iteration algorithms. Their
valuation of each strategy was based on both a fixed strategy and a progress mea-
sure that is maintained throughout the algorithm. For progress measures based on
the universal trees of Jurdziniski and Lazi¢ and our Strahler universal trees, Koh and
Loho’s algorithm improves a strategy and computes the valuation of the strategy
by computing a new progress measure in polynomial time. Moreover, the number
of iterations required is linear in the size of the universal tree used, thereby giving

a quasi-polynomial strategy iteration algorithm. The algorithm that computes this
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improved progress measure is quite involved and uses regularity of the subtrees of
the constructed universal trees.

We propose a strategy iteration algorithm that uses both a strategy and
a decomposition to compute a valuation. We show that our algorithm based on
decompositions, instead of progress measures, is simpler and we give an improved
O( |G|d) upper bound on the time taken to perform each step of the strategy iteration
for a parity game G with d distinct priorities. This is in contrast to Koh and Loho’s
algorithm for which each iteration takes time up to O(|G|*) for quasi-polynomial
universal trees. Moreover, our algorithm extends naturally to any tree rather than
specifically constructed universal trees, and therefore terminates in time that is

linear in the size of any fixed tree.

Theorem D. For a parity game G with n vertices, d priorities, and a tree T of[even]
d, each iteration of the strategy iteration algorithm (Algom'thm on page
takes time O(|G|d). The valuation (of the decomposition and strategy maintained)
at each step is strictly improving. The algorithm terminates with a T -attractor

decomposition of G within n*|T| iterations.

Asymmetric attractor-based algorithm. Algorithms that repeatedly
compute attractors such as McNaughton-Zielonka [McN93| [Zie98] and its several
variants [BDMI8| BDM+21] outperform numerous algorithms that boast better
theoretical complexities. We present an algorithm that iteratively calculates attrac-
tors, with its recursive calls being guided by a universal tree. However, it has two
sharp points of contrast to other attractor-based algorithms whose recursive calls
are guided by trees. Firstly, our algorithm is asymmetric and depends only on the
tree for one player, in contrast to other attractor-based algorithms (McNaughton-
Zielonka [McN93, [Zie98], Jurdziriski-Morvan [JMT22], or Lehtinen et al. [LPSW22]),
which work recursively based on trees for both players. Secondly, our algorithm takes
time only linear in the size of the tree it depends on, as opposed to the quadratic
dependence of the current symmetric algorithms on the same. This improvement is
achieved by using decompositions in our recursive attractor-based algorithm. The
decompositions are used to preserve the progress made in each recursive subcall,

thus leading to our algorithm, whose guarantees are stated below.

Theorem E. For a parity game G and a tree T, Algorithm @ (on page
takes time at most linear in the number of nodes in T and polynomial in the size
of the game G to produce the largest Steven dominion that has a Steven T -attractor

decomposition.
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Symmetric attractor-based algorithm. Although the previous algo-
rithm has running time comparable to state-of-the-art algorithms, it is an algorithm
that treats its players asymmetrically. This asymmetric treatment renders the algo-
rithm intractable for some easy families of games as the worst-case running times are
realised by the asymmetric algorithm on such families of games. For these examples,
symmetric algorithms would have solved the same family of games in polynomial
time. This motivates us to leverage the symmetric nature of the players in these
games to build a recursive, symmetric, attractor-based algorithm, which matches
the theoretical guarantees of the previous algorithm. We extend the techniques de-
veloped in Chapter [7] and show that even in recursive symmetric algorithms, the
progress made in recursive calls can be encoded in the form of a decomposition.

Our symmetric algorithm is described in a way that it shows that its recursive
calls are guided by trees similar to that of the other symmetric attractor-based algo-
rithms. Therefore, our algorithm can be seen as a way to enhance the algorithms of
Parys [Par19], the algorithm of Lehtinen, Schewe and Wojtczak [LSW19, LPSW22],
as well as the algorithm of Jurdzinski and Morvan [JMT22] to closely match (up to
a polynomial factor) the running time of state-of-the-art algorithms [JL17, [DJT20),
FJAK" 19]. While the other symmetric attractor-based algorithms discard the progress
made in their preceding recursive calls, we instead utilise it by a robust encoding
of this progress in the form of a decomposition for both players, which in turn en-
ables subsequent recursive calls to be made on smaller games, thereby improving
our running times.

Even

Theorem F. For a parity game G and two trees 7O ond T
UNIV-EVEN-FAST (resp. UNIV-ODD-FAST) in Algorithm|[9 (on page[10) takes time
noW -O(max ( |TOdd|, |TEven|)) to identify a set of vertices that includes all Steven

dominia of G with a TEV _attractor decomposition and does not intersect with any

, the procedure

Audrey dominia with a 79 attractor decomposition.

For parity games with n vertices and d priorities, and two trees that are
(n,d/2)-universal, these algorithms correctly identify the winning regions of the
game G in time proportional to the size of an (n,d/2)-universal tree. In Chapter
we demonstrate the effectiveness of our symmetric algorithm with the following
observation. Using exponentially large (n,d/2)-trees for both players, our sym-
metric algorithm solves several families of games in polynomial time whereas the
McNaughton-Zielonka algorithm takes exponential time. Since the McNaughton-
Zielonka algorithm’s recursive calls are governed by the same exponentially large
(n,d/[2)-trees, we assert that our enhancement of the McNaughton and Zielonka

algorithm significantly improves runtime for these specific game families.
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Part III

Rabin games. We turn our attention to Rabin games. These games can en-
code parity games without a blow-up. However, deciding the winner in a Rabin
game is NP-complete. Recall that the quasi-polynomial breakthrough of Calude et
al. [CJK"22] and its several follow-ups [JLI7, [FJAK 19| gave algorithms to also

2+0(1))

solve Rabin games in time (’)(mnz(k!) but with an exponential space re-

quirement. We produce an algorithm that improves the dependence on k! from
k12 obtained by converting a Rabin game into a parity game—to a 1t o)
factor in the running time while simultaneously improving its exponential space re-
quirement to a polynomial one. Our main technical ingredient is a characterisation
of winning strategies for Rabin games using colourful decompositions, an extension
of attractor decompositions. Colourful decompositions have a recursive structure
that can be captured by colourful ordered trees—an extension of ordered trees. We
extend the concept of universality to such colourful trees and, using a combinatorial
construction inspired by the universal trees implicitly constructed in the work of Ju-
rdzinski and Lazi¢, build succinct colourful universal trees. Our colourful universal
trees are generalisations of universal trees in the work of Jurdzinski and Lazié¢ [JL17]
to solve parity games, as well as pointer trees that appear in the work of Klarlund

and Kozen [KK91].

Theorem G. A winning strategy for Steven in a Rabin game with n vertices, m

edges, and k colours can found using O(nklogklogn) space and time

5(nm - k!'min {an, ([lgkn_] -1*- k)}) .

Fair Rabin games. We later consider a modified version of Rabin games,
called fair Rabin games. These games are played in arenas similar to Rabin games,
but Audrey must be fair with respect to some specified live edges and also ensure
that the Rabin condition is not satisfied. A play of Audrey is said to be fair if among
these specified live edges, any edge’s source being seen infinitely often also implies
that this edge is taken infinitely often. Although such conditions can be encoded as
a Rabin condition, this leads to an increase in the number of colours used to encode.
We give a characterisation of such games similar to that of colourful decompositions.
Steven has a winning strategy in a fair Rabin game if and only if he has a fair
colourful decomposition of the vertices. These fair colourful decompositions also
have the recursive structure of a colourful tree. Using our construction of colourful

universal trees, we also obtain an algorithm that solves fair Rabin games, whose
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running time is upper bounded by the same function that we gave for algorithms
that solve Rabin games. Since identifying if Steven wins almost surely in stochastic
Rabin games reduces (in log space) to finding a winner in a fair Rabin game, we

also obtain algorithms for it.

Theorem H. Finding the winner in a fair Rabin game can be determined in

O(nklognlogk) space and time

ool (1]

Finally, in Chapter we give an alternate proof of a lower bound result
for solving Rabin games. It was known from the work of Calude et al.[CJK 22|,
that assuming the Exponential Time Hypothesis (ETH, the assumption that there
exists & > 0 such that the 3SAT problem cannot be solved in time (9(2571))7 Rabin

games cannot be solved by algorithms whose running time is bounded by golklogk)

WY Since our algorithm closely matches this bound, this result implies that our
algorithm to solve Rabin games cannot be improved under the ETH.

Our alternate proof of this lower bound stems from a reduction from the
problem called PERMUTATION SAT. We show that specific kinds of instances of

olklogk) = O() (oo algorithm (where k is the

PERMUTATION SAT do not have a 2
number of variables and n is the number of clauses) under the ETH. Consequently,
we reduce such instances of PERMUTATION SAT to a Rabin game. Our reduction,
we believe, is simpler, reminiscent of the NP-hardness reduction from Emerson and
Jutla [EJ99], and more importantly, highlights the insight of the k! factor in our
algorithm better than the existing lower bound proof of Calude et al. which uses

the problem of DOMINATING SET to prove the same.

Theorem 1 ([CJK+22]). Assuming the Exponential Time Hypothesis, there is

no algorithm that solves Rabin games with n vertices and with k colours in time
2o(k:logk:) . nO(l)
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Chapter 2

Games, trees, and attractor

decompositions

In this chapter, we establish notation that we use throughout the rest of the thesis.
Most importantly, we define formally a parity game, and also demonstrate algo-
rithms that solve a given parity game. We restrict ourselves mostly to presenting
definitions and algorithms for parity games and we only define Rabin games. Con-
cepts and notations that appear in only one or two chapters are defined closer to
where they are needed.

Throughout, we use N to denote natural numbers {0,1,2,...}. We also use
N, to denote the positive natural numbers {1,2,...}. For two natural numbers ¢
and j, we denote the set of integers {x € N | i < x < j} with {7,...,j} and sometimes
we write [7,7] and just [j] to denote [1,7]. For a positive natural number n, we
write lgn to denote the binary logarithm, log,(n). We use Inn for the natural
logarithm of n, log.(n). For a set X, we write P(X) to represent its powerset, the
set consisting of all subsets of X.

A directed graph (V, E) is a finite set V of vertices and a set of ordered pairs
of vertices F, referred to as its edges. We say that a vertex v is a neighbour of w if
(u,v) € E. Sometimes, we write u — v to mean (u,v) € E. An undirected graph is
a directed graph, except F is also required to be a symmetric relation. A path on
a directed graph is a sequence of vertices such that any two consecutive vertices in
the sequence belong to the set of edges. We say finite or infinite paths to refer to
the finite or infinite sequences of vertices that define this path. A cycle is a finite
path in this graph whose start and end vertices in the sequence are the same. A
simple cycle is a cycle where, other than the start and the end vertices in the path,

no two vertices are the same. When we refer to graphs, we mean directed graphs

19



unless explicitly mentioned otherwise.

Parity games. Parity games [EJ91] are zero-sum, two-player games played be-
tween Steven and Audrey. A specific instance of the game G consists of a directed
graph (V, E) that is sink-free (where every vertex has an outgoing edge), a partition
(VEvens Voda) of the set of vertices V, a distinguished start vertex from the set of ver-
tices, and a priority function w:V — {0,1,...,d} that assigns every vertex v € V
with a natural number 7(v), called its priority. We say Steven owns vertices in
Viven and Audrey owns vertices in Vpgq. We say that a parity game is (n, d)-small

if it has at most n vertices and the priorities of its vertices are bounded by d.

Strategies, Traps, and Dominions. For a parity game G as with the
graoh (V, E), a Steven strategy is a function from the set of all finite paths ending
at a Steven vertex on the graph (V) E) to a neighbour of this vertex. An infinite
path starting at the start vertex in the underlying graph is said to be a play. A play
Vg, V1, .-+, V;, ... 1S said to respect a strategy if for every vertex v; that belongs to
Steven, the vertex v;, is the one proposed by the strategy on the finite prefix of this
play ending at v;. An infinite play is said to be even if the highest priority of the
vertices visited infinitely often is even, and otherwise it is said to be odd. We also
say that a play is winning for Steven if it is even. Otherwise, the play is winning
for Audrey. A game is said to be winning for Steven if he has a strategy such that
every infinite play respecting the strategy is even. Such a strategy is often referred
to as Steven’s winning strategy. We know that parity games are determined, that is,
a game is winning for either Steven or Audrey [Mar75]|.

Furthermore, the positional determinacy theorem for parity games states
that if Steven has a winning strategy, then he can win by using strategies that do
not require him to “remember the past”. A positional Steven strategy is defined as

a set 0 € F of edges such that:
e for every v owned by Steven, there is an edge (v,u) € o,
e for every v owned by Audrey, if (v,u) € E then (v,u) € o.

We say that o is an even positional winning strategy if all infinite paths in the
restricted graph (V, o) are winning for him. Audrey positional strategies and posi-

tional winning strategies are defined similarly.

Theorem 2.0.1 (Positional determinacy of parity games [EJ91]). If a game G is
winning for Steven, then Steven has a positional winning strategy. The same holds
for Audrey.
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When talking about strategies in parity games, for the most part, since both
players have positional winning strategies, it is sufficient to verify the parity criterion
on all (simple) cycles in the graph restricting to this strategy. More specifically, a
parity game is winning for Steven if and only there is a positional winning strategy
for Steven such that all simple cycles in the graph obtained from restricted to this
strategy contains are even. Here, we say that a simple cycle in a parity game is
even when the highest priority occurring in such a cycle is even. Otherwise, we call
a simple cycle odd. However, we explicitly consider the parity criterion on infinite
plays obtained from such a strategy when we find it more convenient.

Henceforth, in the context of parity games, when we refer to strategies, we
usually mean positional ones. For a set S of vertices, we write GN.S for the substruc-
ture of G whose graph is the subgraph of (V, E') induced by the sets of vertices S.
Sometimes, we also write G \ S to denote G N (V' \ S). We assume throughout that
every vertex has at least one outgoing edge, and we reserve the term subgame to
substructures G N S, such that every vertex in the subgraph of (V, F) induced by S
has at least one outgoing edge. For a subgame G =¢gns , we sometimes write V(g’)
for the set of vertices S that the subgame G is induced by. But mostly, when there
is no risk of confusion, we simply write G instead of V(G').

For a non-empty set of vertices R, we say that a Steven strategy o traps
Audrey in R if w € R and (w,u) € o imply u € R. We say that a set of vertices R
is a trap for Audrey [Zie98] if there is a Steven strategy that traps Audrey in R.
Observe that if R is a trap in a game G then GN R is a subgame of G. For brevity, we
sometimes say that a subgame g’ is a trap if g’ = GNT and the set T is a trap in G.
Moreover, the following property holds: if T is a trap for Steven in game G and T '
is a trap for Steven in subgame G NT then T "is also a trap for Steven in G. For a
set of vertices D € V', we say that a Steven strategy o is a Steven dominion strategy
on D if o traps Audrey in D and all paths in the subgraph (D, o) are winning for
Steven. Finally, we say that a set D of vertices is a Steven dominion [JPZ0S] if
there is a Steven dominion strategy on it.

Similarly, by swapping the roles of the two players, all concepts defined for
Steven in a parity game are also defined for Audrey. We note that the sets of Steven
dominions and of Audrey dominions are both closed under union, and hence the
largest Steven and Audrey dominions exist, and they are the unions of all Steven
and Audrey dominions, respectively. Moreover, every Steven dominion is disjoint

from every Audrey dominion.
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Reachability strategies and attractors. In a parity game G, for a target set of
vertices B and a set of vertices A such that B € A, we say that a Steven strategy o
is a Steven reachability strategy to B from A if every infinite path (including the
starting vertex of the path) in the subgraph (V, o) that starts from a vertex in A
contains at least one vertex in B.

For every target set B, there is the largest set (with respect to set inclusion)
A from which there is a Steven reachability strategy to B in G; we call this set the
Steven attractor to B in G [Zie98]. We further say the set A\ B is the strict Steven
attractor to B in V(G). Audrey reachability strategies and Audrey attractors are
defined analogously. We highlight the simple fact that if A is an attractor for a
player in G then its complement V' \ A is a trap for them and that attractors are
monotone operators: if B' € B then the attractor to B' is included in the attractor
to B.

We define an attractor decomposition below that captures the intuition out-
lined in the introduction of this thesis.

If G is a parity game in which all priorities do not exceed a non-negative even

number d then we say that
A = <A7 (SlaAhAl)? B (567“457‘4[))

is a Steven d-attractor decomposition [DJL18, [DJL19| of G if:

1. A is the Steven attractor to the (possibly empty) set of vertices of priority d
in G;
and setting G; = G\ A, for all i = 1,2,...,¢, we have:

2. S; is a non-empty trap for Audrey in G; in which every vertex priority is at

most d — 2;
3. A, is a Steven (d — 2)-attractor decomposition of subgame G N S;;
4. A; is the Steven attractor to .5; in G;;
5. Giv1=Gi \ A

and the game Gy, is empty. If d = 0 then we require that ¢ = 0.

We deviate slightly from this definition of an attractor decomposition in
Part [[T, in which we restate the modified definition to suit our algorithms.

The following proposition states that if a subgame induced by a trap for

Audrey has a Steven attractor decomposition then the trap is a Steven dominion.
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Indeed, a routine proof argues that the union of all the Steven reachability strategies,

implicit in the attractors listed in the decomposition, is a Steven dominion strategy.

Proposition 2.0.2 ([Zie98, DJL18]). If d is even, R is a trap for Audrey in G, and
there is a Steven d-attractor decomposition of G N R, then R is a Steven dominion

ng.

Attractor decompositions for Audrey can be defined in the analogous way by
swapping the roles of players as expected, and then a dual version of the proposition
holds by symmetry.

The following theorem implies that every vertex in a parity game is either in
the largest Steven dominion or in the largest Audrey dominion—it is often referred

to as the positional determinacy theorem for parity games.

Theorem 2.0.3 ([EJ91, McN93| [Zie98]). For every parity game G, there is a parti-
tion of the set of vertices into a trap for Audrey Wgyen and a trap for Steven Woqq,
such that there is a Steven attractor decomposition of G N Wgyen and an Audrey

attractor decomposition of G N Woqq-

Ordered trees. Ordered trees are defined inductively; the trivial tree () is an
ordered tree and so is a sequence (T4, T5,...,T;), where T} is an ordered tree for
every i = 1,2,...,¢. The trivial tree has only one node called the root, which is a
leaf; and a tree of the form (77,75, ...,Ty) has the root with ¢ children, the root is
not a leaf, and the i-th child of the root is the root of the ordered tree T;.

Because the trivial tree () has just one node, we sometimes write o to denote
it. If T'is an ordered tree and i is a positive integer, then we use the expression
<Ti> =(T,...,T) to denote the tree whose root has i children, each of which is the
root of a copy of T. We also use the - symbol to denote concatenation of sequences,
which in the context of ordered trees can be interpreted as sequential composition

of trees by merging their roots; for example,
((o®)) - (0", (toN?) = (o), 0", ({o1)?) = ({0,0,0) ,0,0,0,0,{{0}}, ({o))).

For an ordered tree T, we write height (7) for its height and leaves (T') for
the number of its leaves, which are defined inductively: the trivial tree () = o has
1 leaf and its height is 1; the number of leaves of tree (17,75, ...,T;) is the sum of
the numbers of leaves of trees T, Ty, ..., Tp; and its height is 1 plus the maximum
height of trees Ty, 15, ..., T,. Intuitively, an ordered tree is equitable if all its
branches have the same height. We say that an ordered tree T' = (T4, Ty, ..., Ty) is
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equitable if each 7T is equitable and they all have the same height. We say that an

ordered tree is (n, h)-small if it has at most n leaves and its height is at most h.

Example 1. The tree <0,<03>,0> is the tree (o,{0,0,0),0) it has 5 leaves and
height 3. Similarly, the tree <<03> o, ((0))2> has 9 leaves and height 4

Trees of Attractor Decompositions. The definition of an attractor de-
composition is inductive and we define an ordered tree that reflects the hierarchical

structure of an attractor decomposition. If d is even and
A= <A7 (SluALAl)? ) (Sé7AZ7Af))

is a Steven d-attractor decomposition then we define the tree of attractor decompo-
sition A, denoted by T4, to be the trivial ordered tree () if £ = 0, and otherwise, to
be the ordered tree (TAI,TAQ, . 7TAe>> where for every i = 1,2,..., 4, tree Ty, is
the tree of attractor decomposition A;. Trees of Audrey attractor decompositions
are defined analogously.

Observe that the sets Sy, 59,...,S¢ in an attractor decomposition as above
are non-empty and pairwise disjoint, which implies that trees of attractor decom-
positions are small relative to the number of vertices and the number of distinct
priorities in a parity game. The following proposition can be proved by routine

structural induction.

Proposition 2.0.4. If A is an attractor decomposition of an (n,d)-small parity
game then its tree Ty is (n,[d[2] + 1)-small.

Labelled ordered tree. We define labelled ordered trees similar to ordered trees:

the trivial tree () is an LL-labelled ordered tree and so is the following sequence

<(CL1, El)a (a27 £2)7 ceey (akwﬁk’)) )

where L1, Lo, ..., L are LL-labelled ordered trees, and aj, asg, ..., a; are distinct
elements of a linearly ordered set (IL, <) and a; < ay < -+ < a;, in that linear order.
Note that ordered trees can be naturally viewed as N-labelled ordered trees in which
the sequence ag,aq,...,a; is always an initial segment of the positive integers. We

define the unlabelling of a labelled ordered tree

<(CL1, [’l)a (a2a ‘62)7 ceey (akaﬁk)> )

24



recursively, to be the ordered tree (Ty,T5,...,T}), where T; is the unlabelling
of L; for every ¢ = 1,2,....k. An L-labelling of an ordered tree T is an IL-
labelled tree £ whose unlabelling is T'. We define the natural labelling of an ordered
tree T = (T4,...,T}), again by a straightforward induction, to be the N-labelled
tree ((1,L1),...,(k, L)), where Ly, ..., L}, are the natural labellings of trees T7,
..., T,. Unsurprisingly, the unlabelling of the natural labelling of an ordered tree T
is tree T itself.

For an L-labelled tree ((ai,L1),...,(ag,Ls)), its set of nodes is defined
inductively to consist of the root () and all the sequences in L™ of the form (a;) -
v, where v € L* is a node in £; for some i = 1,...,k, and where the symbol
- denotes concatenation of sequences. For example, the natural labelling of tree
<<03> o, ((0>)2> has the set of nodes that consists of the following set of leaves
(1,1), (1,2), (1,3), (2), (3), (4), (5), (6,1,1), (7,1,1), and all of their prefixes.
Indeed, the set of nodes of a labelled ordered tree is always prefix-closed. Moreover,
if L € L™ then its closure under prefixes uniquely identifies a labelled ordered tree
that we call the labelled ordered tree generated by L, and its unlabelling is the
ordered tree generated by L. For example, the set {(1),(3,1),(3,4,1),(6,1)}
generates ordered tree (o, (o, (o)), (0)).

A node is the ancestor of another node if the former is a prefix of the latter.
A node is a descendant of its ancestor. The node (3) is an ancestor of (3,4,1) and
they are both descendants of the root (). A labelled ordered tree is a totally ordered
set if we use the lexicographic order on the node and enforce that the ancestor is at
most as large as the node itself. Using such an order, we say that a parent of a node
is the largest ancestor of a node other than itself. We say a node is the child of its
parent node. Since the root () is the smallest node, it does not have a parent and
the leaves of the tree do not have a child. Finally, two nodes are said to be siblings

if they share the same parent.

Embedding ordered trees. Intuitively, an ordered tree T can be embedded in T’ '
if T can be obtained from T by pruning some subtrees. More formally, the trivial
tree () can be embedded in every ordered tree, and (T}, T5, ..., T})) can be embedded
in (T{,Tz', e ,Té) if there are indices i1, %9,...,% such that 1 <41 <9 < +++ <4} </

and for every j = 1,2,...,k, we have that T; can be embedded in Ti'j.
Universal ordered trees. An ordered tree is (n, h)-universal [CDF"19) if every

(n, h)-small ordered tree can be embedded in it. An obvious candidate for a universal

tree is obtained by concatenating all (n,h)-small ordered trees in some order. But
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an improvement to this naive universal tree is the complete n-ary tree of height h
that can be defined by induction on h: if h = 0 then C, ¢ is the trivial tree (),
and if h > 0 then C,,  is the ordered tree (Cﬁh_l). The tree C,,j is obviously
(n, h)-universal but its size is exponential in h.

Jurdzinski and Lazi¢ gave a construction of an (n,h)-universal tree S, p,

lg"];hﬂ). An algorithm whose running time is a polynomial

whose size is at most n({
of the size of the tree would be both quasi-polynomial and also fixed parameter
tractable with respect to h. To acknowledge their fundamental contribution, we
refer to these trees as [Jurdzinski-Tazi¢ universal treek.

For g = 0, let I, be the trivial tree, that is the tree with exactly one leaf, of
height g. For example, I; = () and I3 = ({())) = ({°)). Such an S,,, is constructed

inductively as follows: Sy = I}, and S, ; = <0n>. Finally, the (n, h)-universal tree

is declared to have two copies of the (n/2, h)-universal side attached—one to each

side of the (n, h — 1)-universal tree with an extra root node. More formally,

Sn,h = Sn/2,h : <Sn,h—1> : Sn/2,h

Parys’s (n, h)-universal tree, so named after the recursive attractor-based
algorithm of Parys [Par19] is as follows: if A = 0 then P, j, is again defined to be the
trivial tree (). If h > 0 then P, is defined to be the ordered tree

<P[n/2j,h—1[n/2j> . (Pn,h—1> : <(P[n/2j,h—1)Ln/2J> .

Ordering on bitstrings. We introduce the total linear order used by Jurdzinski
and Lazic on the set W = {0,1}" of bit strings: for each bit b € {0,1}, and for all
bit strings 3, 8' € {0,1}", if ¢ is the empty string, then we have

08<e<1B, and bB3<bB iffB<p.

Theorem 2.0.5 ([JL17]). The prefiz-closure of the set of h-length sequences, where

the word formed by the concatenation of sequences that have at most [lgn] bits,

forms the set of nodes of a W-labelled |Jurdzinski-Lazic universal tred Sy, j,.

Jurdzinski and Morvan [JM20l [JMT22] produced an algorithm that unified
both McNaughton-Zielonka algorithm and its recent quasi-polynomial variants due
to Parys [Par19], and due to Lehtinen, Schewe, and Wojtczak [LPSW22] by produc-
ing a unifying algorithm whose recursive subcalls were dictated by an interleaving
of universal trees. In Algorithm [I we reproduce the Jurdzinski-Morvan algorithm

to solve parity games, by stating procedure JM-EVEN (which they call Univgyey,)
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and only remark that procedure JM-ODD is defined analogously. Their algorithm
computes attractors in a similar manner to the original McNaughton-Zielonka algo-
rithm, but with its recursive calls guided by two trees 79 and 75" instead. They

Algorithm 1 The Jurdzinski-Morvan Algorithm

Input: A game G with maximum (even) priority d, two trees TEVEH, and 7°%
whose heights are both d/2 + 1.

Output: A subset of vertices of the game [> These vertices are winning for Steven
if 757" and 79 are both universal.

1. procedure JM-EVEN(G,d, T"", TOdd)

) lot 7044 _ (7-10dd’7-20dd, N .’EOdd>

3 G« g

4 fori—1...kdo

5: D; « n Hd)ng;

6 A; « Steven attractor to D; in G;

7 Gi — G\ 4;

8 U; « JM-Opp (G, d - 1, 7", 7,74

9: A; < Audrey attractor to U; in G;

10: Gis1 < Gi \ A

11: end for

12: return V(G41)

13: end procedure

further remarked that on setting tree 794 a4nd TEV 46 the complete trees| Cy, q/241

and C,, 42 respectively, Algorithm [I] simulates the recursive calls of McNaughton

and Zielonka. If instead, these trees are declared to be universal trees
P, 4/2+1 and P, 4/9, we get Parys’s [Par19, [LPSW22] recursive attractor-based algo-
rithm. Finally, Lehtinen, Schewe and Wojtczak’s [LSW19, LPSW22] improvement
of Parys’s algorithm can be obtained by setting the trees to the [Jurdzinski-Lazid|

Sajper and S,

In this thesis, especially in Part [[I, we present algorithms in which universal

trees are implicitly present. These trees are never given as part of the input to any
of the algorithms. We instead assume that our algorithm has access to the nodes
of these trees and can perform elementary operations on them, such as finding the
next sibling and finding the parent, efficiently. All the above-mentioned universal

trees, and the ones we introduce in the future chapters, satisfy this requirement.
Rabin games. Rabin games are also played on a directed graph [Rab69, [EJ91]

between Steven and Audrey. A Rabin game consists of a directed graph (V, E)

whose set of vertices V are partitioned among the two players, a start vertex and
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two subsets of the set of colours {cy} U C for each vertex v denoted by G, of a set
good colours and a set R, of bad colours. We require above that ¢y is a colour that
is distinct from all colours in C and G, does not contain ¢y for any vertex v. Such
games are also called a (cy, C')-colourful Rabin game.

An infinite path in the underlying graph satisfies the Rabin condition if there
exists some colour such that among the set of vertices visited infinitely often, there
is a vertex v that contains ¢ in G,,, and none of the vertices v that appear infinitely
often contain ¢ in R,,.

Steven’s positional strategy o is defined similarly to his positional strategy

in a parity game. A (positional) Steven strategy is a set o € E of edges such that:
e for every v that belongs to Steven, there is an edge (v,u) € o,
e for every v that belongs to Audrey, if (v,u) € E then (v,u) € o.

A positional strategy ¢ is winning for Steven if all infinite paths in the game re-
stricted to the game graph (V, o) satisfy the Rabin condition. Steven wins the
Rabin game if he has some positional strategy to win in G. Although in our intro-
ductory definition, we did not exclude the possibility of non-positional strategies, it
is enough to consider only positional strategies. Rabin games are won by Steven us-
ing positional strategies, although Audrey might require winning strategies that are
not positional to win a Rabin game [EJ88, [EJ99]. Steven traps, Steven attractors,
Audrey traps, and Audrey attractors are defined exactly as for parity games.
Observe that an (n,d)-small parity game on an graph (V,FE) can be en-
coded as a (cg, C')-colourful Rabin game on the same directed graph where C' =
{1,2,...,]d/2]} has |d/2] colours. We assign the good sets and bad sets to be

G, ={i| n(v) = 2i} and B, ={i|n(v) =2i+1},

foralli € {1,...,|d/2]} and all v € V. Tt is routine to verify that any infinite path on
such a (cg, C')-colourful game is winning for Steven if and only if the corresponding
path in the parity game is even.

Because the subsets of vertices for each colour form a chain with respect
to the partial order induced by set-inclusion, the parity condition is also known as
Rabin-chain condition.

We informally mention other related games that we refer to in this thesis.

Muller games. A Muller game [McN93] G consists of an arena that is a directed

graph (V, E) whose set of vertices is partitioned among Steven and Audrey, a finite
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subset of tags S, a tagging function that labels each vertex from V with a tag from S,
and an objective F that is specified by a family of subsets of tags F € P(S). We
define (non-positional) strategies, plays, and plays respecting strategies similarly to
parity games. A play is said to be winning for Steven if the set of tags among the
set of vertices visited infinitely often by this play is in F. Steven wins the game if

he has a strategy, such that all plays that respect this strategy are winning for him.
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Chapter 3

Solving nested fixpoint

equations

Computing fixpoints is fundamental in computer science. The problem of identify-
ing the solution to a system of nested fixpoint equations (NFEs) over finite lattices
is known to be computationally equivalent to identifying the winner of a parity
game [LBC 94, [Sei96, BKMMP19]. However, most of the reductions involve an ex-
ponential increase in the size of the resulting parity game. The satisfiability problem
of the coalgebraic p-calculus has also been reduced to it [HS19]. Notably, break-
through result of Calude et al. could be interpreted as an algorithm that solves spe-
cific kinds of fixpoint equations in quasi-polynomial time. Following their progress,
there were several algorithms that were aimed at solving more general fix-point equa-
tions using universal trees [ANP21] and universal graphs [HS21]. Hausmann and
Schroder [HS21] gave a quasi-polynomial algorithm to solve NFEs using progress
measures on universal graphs. In parallel, Arnold, Niwinski, and Parys [ANP21]
solved NFEs using the key result on decompositions of dominions similar to that of
Jurdzinski and Morvan’s [JM20, [JMT22] universal algorithm.

Within this context, our contribution is to provide a distinct perspective to
solving nested fixpoints. We achieve this by transforming a nested fixpoint equation
into a fixpoint game, inspired by the approach of Hausmann and Schroder [HS21],
yet utilising Jurdzinski and Morvan’s universal algorithm parameterised by two trees
as in [ANP2I]. Note that fixpoint games are exponentially larger than the repre-
sentation of a fixpoint equation. However, we provide a modification to the Jur-
dzinski-Morvan algorithm, thereby ensuring that this modified algorithm operates
on a specific type of subgames of these fixpoint games, termed “flowery subgames.”

By capitalising on the properties of flowery subgames, we bypass the exponential
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representation typical for fixpoint games.

Comparatively, our approach, published in 2022 [JMT22] aligns with the un-
derlying concepts of Arnold, Niwinski, and Parys’ algorithm, as we also utilise a pair
of trees to guide the computation process. However, we differ in two key aspects.
Firstly, it should be noted that Arnold, Niwinski, and Parys [ANP21] also provide an
asymmetrical version of their algorithm—using a technique of Seidl [Sei96]—whose
running time is almost a square-root in the worst case than our proposed algorithm.
Their asymmetric algorithm uses a technique of Seidl [Sei96], which ensures that
the required number of function evaluations to solve the nested fixpoint equation is
linear in the size of one universal tree, as opposed to ours, which requires time that
is a square of the size of a universal trees. Secondly, our algorithm includes the com-
putation of attractors—inherited from the Jurdzinski-Morvan algorithm for solving
parity games—which is absent in both the symmetric and asymmetric versions of

the algorithms by Arnold, Niwinski, and Parys.

3.1 Nested fixpoint equations

Nested fixpoint equations, as the name suggests, are a system of equations, where
each equation is a fixpoint equation defined on arbitrary functions over a finite
lattice. In this chapter, however, we only consider nested fixpoint equations over
finite powerset lattices.

Consider a finite set of elements U and its powerset lattice P(U). Let f
be a monotone function (component-wise monotone) from P (U ) to P (U)*. The
function f can be expressed as a d-tuple (f1, -+, f4) of functions, where each function
fi, fori e {1,...,d} is from P (U)d to P (U) and each f; is just the projection of the
function f to the i-th component. Since there is a natural bijection from d-tuples
of subsets of U to subsets of (U X [d]), we instead denote f as a function from
P (U x [d]) to P (U x [d]).

A nested fixpoint equation is a system of d fixpoint equations of the form:

X =, filXy,...,Xq) (*)

for ¢ ranging over 1,...d, where n; = v, refers to the greatest fixpoint operator, if
1 is odd, and 7n; = p, which refers to the least fixpoint operator. We call a system
such as Eq. a nested fixpoint equation and write X =, f(X) to depict it. One
could consider a more general form of fixpoint equations where 7; € {u, v}, but for
simplicity of presentation, we restrict ourselves to the above.

The solution of a system of d equations as defined by Eq. , is a subset of

32



U X [d], defined recursively as follows. The solution of the empty set of equations
is the empty tuple. For a system of one or more fixpoint equations, we define a
function fd_1 from subsets of U to subsets of (U X [d—1]). This function fgl_1
takes as input Yy, a subset of U, and uses this input to fix X; = Yy in the system of
equations. The solution to the system of d — 1 equations is obtained by fixing X, to
be Yy as the output of fd_l. We finally say the solution of the system of equations
is (/7 (Ya), Ya), where Yy = ng (AXa-fa(f* (Xa), Xa)).

Fixpoint Games. For a system f of nested fixpoint equations, we define an equiv-
alent parity game Gy, called a fizpoint game. The solution of the parity game
Gy correlates to the solution of the system of nested fixpoint equation defined by
X =, f(X) [BKMMP19, HS21].

The underlying graph in the game Gy so defined is (Vy, Ey) where the set of
vertices Vy consists of the set and the powerset of U X [d], more precisely, it is exactly
the set (U X [d]) U{vag | A € U x[d]}. The vertices corresponding to elements of
the set (U x [d]) belong to Steven and the ones corresponding to subsets of the
same set belong to Audrey. The priority function of G, represented by 7y, assigns
Steven’s vertices (u,7) to i, whereas all vertices belonging to Audrey are assigned
priority 0. The edges from a vertex (u, i), belonging to Steven in Gy, lead to the set
of Audrey’s vertices {v4 | (u,i) € f(A)} and the edges from a vertex vy, belonging
to Audrey, lead to the set of Steven’s vertices {(u,7) | (u,7) € A}.

Theorem 3.1.1 ([BKMMP19], Theorem 4.8). For a system consisting of d fixpoint
equations X; =, fi(X1,...,X4), whose solution is (Y1,...,Y;), the element u € Y;
if and only if Steven wins from the vertex (u,i) in the corresponding fixpoint game

gy

Due to Theorem of Baldan et al., [ BKMMP19|, we henceforth deal only

with fixpoint games in order to solve our fixpoint equations.

3.2 Solving fixpoint games

We provide a way to solve fixpoint games by modifying the Jurdzinski-Morvan al-
gorithm. We define a specific kind of subgames that we call flowery subgames and
show that they are pertinent for solving fixpoint games using attractor decomposi-
tion algorithms.

Intuitively, for two non-empty subsets of the set (U X [d]), the flowery sub-

game S(X,Y’) represents a subgame of G; whose set of vertices consists of
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e all vertices of Steven belonging to Y, resembling the core of a flower;

e all of Audrey’s vertices v4 where A is a subset of X intersecting non-trivially

with Y, resembling the petal of a flower.

Definition 3.2.1 (Flowery subgames). For a nested fizxpoint game G, obtained from
a system of d equations over the lattice P(U), and two subsets @ € Y € X € UX[d],
we define the flowery subgame S(X,Y) to be the subgame induced by the vertices
Yw{vg|AS X and AnY # @}.

We also call a subgame G' flowery if there are subsets X and Y of (U x [d]) such
that this subgame G' is equal to S(X,Y).

In the game Gy, on removing vertices that have no outgoing edges along
with the respective attractors to these sets of vertices, that is, Audrey attractors to
Steven’s vertices with no outgoing edges and vice versa, we get a flowery subgame.
Moreover, the following lemma reassures us that all significant operations performed
by the universal algorithm for parity games on flowery subgames, result in flowery

subgames.

Lemma 3.2.2 (Flowery subgame lemma). The subgames G; computed by the (mod-
ified) procedure JM-EVEN in the Jurdzinski-Morvan algorithm (as in Algorithm
are flowery if the input game G is a flowery subgame. In particular, Giy1, which is

the subgame returned by the procedure, is flowery.

An analogous lemma holds for Audrey’s procedure JM-ODD. The attractor
to a set of vertices during a run of the algorithm can be computed by at most d|U|
many evaluations of f on subsets of U X [d]. Therefore, we can solve nested fixpoint
games in quasi-polynomial time using an attractor decomposition algorithm. This
approach resembles Algorithm[I] with only minor adaptations required. Specifically,
the subgames are replaced by flowery subgames, represented by two subsets of U.
Furthermore, the computation of attractors is replaced with suitably defined modi-

fications tailored for flowery subgames, as outlined in the statement of Lemma

Theorem 3.2.3. The modified universal algorithm that solves nested fixpoint equa-
tions on trees T and T makes |TOdd| . |TEven| many recursive calls. Fach

recursive call makes at most 2d|U| function evaluations of f.

Plugging in quasi-polynomial universal trees, we get the following theorem

as a corollary.
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Theorem A. The modified Jurdzinski-Morvan algorithm that computes nested fiz-
point equations takes quasi-polynomial time and polynomial space, when the under-

lying trees are quasi-polynomial sized universal trees.

We dedicate the remainder of the chapter to proving Lemma and The-
orem [A] Whenever we want to denote the fixpoint obtained by repeated application
of a monotone function f on a set, we call this f*. Before we embark on the proofs,
we would like to call attention to the following property of flowery subgames. It
shows how complements of two specific kinds of flowery sets result in another flowery

subgame. We will use this property in several of our proofs.

Property 1. For ACY € X ¢ (U x[d]), we have:
S(X,Y)\S(X,A)=S(X\A Y \A).

Notice that S(X \ A, Y\ A) =S(ZUW, W), where Z =X \Y and W =Y \ A.
Consider the following proposition useful in the proof of the Lemma [3.2.2

Proposition 3.2.4. Given a fizpoint game Gy, after removing the Steven attractor
to the set of Audrey’s vertices with no outgoing edges and the Audrey attractor to

Steven’s vertices with no outgoing edges, we are left with a flowery subgame.

Proof. The game G contains exactly the vertices in the subgame S(U x[d], U x[d])

along with vg.

e Initially, we remove the only Audrey vertex with no outgoing edge: vg, along
with its Steven attractor. The Steven attractor to vg in Gy is exactly all the
vertices of the flowery set S(C,C) and vy, where C' = f*(@) is winning for
Steven. The remaining subgame after removing these vertices is the flowery
subgame S(U x [d], (U x [d]) \ C) from Property

e Let us call the flowery subgame obtained from the above procedure S(X,Y").
Observe that if Y € f(X), then there is always an outgoing edge for each

vertex in the subgame. If not, we remove the Audrey attractor to the set

of Steven’s vertices with no outgoing edges: Y n f(X). The complement of
this Audrey attractor turns out to be the flowery subgame S(X,Y \ f(X))
from Property
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Assuming now that we always have outgoing edges in flowery subgames, we
consider the following lemma, which shows how we can compute attractors to sets
in these subgames with at most d - |U| many calls to the function f.

Let us now prove Lemma We proceed by proving a stronger statement
than the one in Lemma|3.2.8 To prove Lemma|[3.2.8] in turn, we need Lemma 3.2.5
Lemma intuitively asserts that attractors of specific flowery subgames are

specific flowery subgames whose complement is also flowery.
Lemma 3.2.5. In a flowery subgame G = S(X,Y):

(a) the Steven attractor to a set of Steven’s vertices ACY in G = S(X,Y) where
Z=X\Y is
S(Z U Pre;,Even(A)a Pre;,Even(A))

where Preg pyen(A) = (F(ZUA)NY)UA;

(b) the Audrey attractor to a set of Steven’s vertices A or a subgame S(X, A) in
G=8(X,Y) is
S(X,Preg oaa(A))

where Preg 0ada(A) = (f(X \A)nY) U A.

We will break down our Lemma into Propositions and which will
result in Corollary from which Lemma follows.

Proposition 3.2.6. In a flowery subgame G = S(X,Y) and A €Y, the vertices
of the flowery subgame S(Z U Preg gpyen(A), Preg pven(A)) are exactly those from

which Steven has a strategy to visit A in at most three steps, where Preg pyen(A) =
(f(ZUA)NY)U A.

Proof. We will argue about vertices from which Steven has a strategy to visit vertices

in A in at most one, two and three steps below.

(1) Consider any Audrey vertex vg where B € Z U A and the intersection of B
with A is non-empty. From such a vg, in one step, Steven can ensure that a
play reaches A. All such vertices vg along with the core A are exactly denoted
by the vertices of the subgame S(Z U A, A).

(2) We will show that, from any of Steven’s vertex (u,?) € Preg gyen(A4) = f(Z U
A)NY} U A, there is a strategy for him to reach a vertex in A owned by him

in at most two steps. We will show that
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3)

(=) in one step, Steven can move to some Audrey vertex vg € S(Z U A, A);

<) from vertices not in Preg gven(A), all of Steven’s outgoing edges lead to
g’
a vertex not in S(Z U A, A).

To show the forward direction, let (u,7) € (f(ZUA)NY)U A. If (u,i) € A
then we are done, if not, the strategy for Steven from (u,4) is to choose the
Audrey vertex vzu4. Such an edge exists since (u,7) € f(Z U A), and this
Audrey vertex is in the flowery subgame S(Z U A, A).

To show the reverse direction,consider (u,7) ¢ f(Z U A) U A but (u,i) € Y.
All outgoing edges from the Steven vertex (u,i) lead to an Audrey vertex vg
in S(X,Y’) such that B has some element other than from Z or A, that is,
B\ (ZuU A) + @. This follows from the monotonicity of f along with our
assumption that (u,7) ¢ f(Z U A). After one step, the game is at an Audrey
vertex vpg that it is not in S(Z U A, A).

The argument to conclude that S(X, Preg 0qa(A)) is exactly the set we desire

is similar to (1). O

Proposition 3.2.7. In a flowery subgame G = S(X,Y) and for a set of Steven

vertices A €'Y in it, Audrey has a strategy to visit some vertex from the set of

Steven vertices A in at most three steps from all the vertices in the flowery subgame
S(X,Preg oaa(A)), where Preg 0qa(A) = (f(X \ A)nY)UA. This subgame is also

contains all vertices from which Audrey has such a strategy.

Proof. We show the set of vertices from which Steven has a strategy to visit vertices

in A

(1)

(2)

in at most one, two and three steps below.

From vertex vg where B of X which intersects with A non-trivially, Audrey
would be able to reach a vertex in A in at most one step. This is exactly all

Audrey’s vertices in the flowery subgame S(X, A).

We will show that, in one step, Audrey has a strategy to visit the subgame
S(X, A) from the vertices in Preg 0qqa(A)UA. We do this by showing inclusion

in two directions.

(=) Consider (v,j) € Preg oqda(A) = (F(X\A)NY)UA. If (v,j) ¢ A, then
(v,j) € Y and f(X \ A). Mainly note that (v, ) ¢ f(X \ A). Since all
subgames are such that there is always an outgoing edge and given that
f is monotone, any Audrey vertex vg in S(X,Y) which has an edge to

it from (v, j) must be such that BN A # @. For any choice successors
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from (v, 7) of Steven will lead to a vertex B that intersects with A and
hence there is a strategy for Audrey to move to a vertex in (u,i) in the
set BN A.

(<) Now we need to show a strategy for Steven to avoid S(X, Preg 0d4a(4)),
for two steps from all other Steven vertices. Let us denote Preg oq44(A) by
W. Note that the complement of S(X, W) in S(X,Y) is S(X\W, Y \W).
Also notice that
VAW =Y\ (f(X\A4)u4).

So, any (w,j) €Y'\ Z is in Y and since (w,j) ¢ W, (w,j) € f(X \ A).
This means that, from any such (w, j), Steven can choose the vertex vp
in S(X\W,Y \ W) where B € X \ A, making sure that in the next step
Audrey will not be able to take the play to Steven’s vertex in A.

(3) From the structure of the game, it is easy to see that any vp such that B inter-
sects with Preg 0qq4(A) U A would be able to visit an element in Preg oqq(A) U
A, which we have shown is exactly the set of vertices from which Audrey could

force the play in at most two steps to visit A. O

From the proof of the Propositions [3.2.6] and [3.2.7], we can extend these to
show the corollary below from which Lemma follows.

Corollary 3.2.7.1. In a flowery subgame G = S(X,Y) and ACY,

o The flowery subgame S(Z U Preg pyen(A), Preg mven(A)) is the set of vertices
from which Steven has a strategy to visit the vertices in S(ZU A, A) in at most
two steps, where Preg pyen(A) = (f(ZUA)NY) U A;

o The vertices of S(X,Preg 0aa(A)) is the set of vertices from which Audrey has

a strategy to visit a vertex in S(X, A) in at most two steps.

Lemma follows naturally from Corollary thus concluding the
proof of Lemma [3.2.5
We will now proceed to the main proof of the section, where we prove a

(slightly) stronger version of our flowery subgame lemma below.

Lemma 3.2.8. (i) If JM-EVEN is run on a flowery subgame S(X,Y), then in
all iterations in the for-loop, the subgame G; = S(X \ AL, Y\ A}), where A, € Y.

(i7) If IM-ODD is run on a flowery subgame S(X,Y"), then for each i, the subgame
Gi=S(X,Y \ A)), where A, C Y.
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Proof. We will prove this by induction on the sum of the number of vertices in these
subgames and the number of vertices on which these calls are made. For the base
case, with an empty set irrespective of any priority, the above statement is trivially
true. We will now prove that (i) and (i) hold for games with at least one vertex

and trees 7" and 7°%. The proof follows from Lemma and by an induction

on the size of the game and tree.

(i) Since G = G = S(X,Y), we show that if G; is of the form S(X \ A4}, Y \ A})
where A; €Y, then G;,1 is also of the form S(X \ ALY \ AlLy), where A;41 2 A;.
For convenience, we will call X \ A} as X; and Y \ A} as Y;. We will show that G, is
of the form S(X \ Ay, Y \ Al,;) by showing that in fact it is S(X; \ Ai41, i \ Aieq)
for some A;H € Y. First, note that Q; is a subgame of obtained by removing A;,
which is the Steven attractor to the set D; containing only Steven vertices which,
moreover, have the highest even priority vertices in G;. From Lemma [3.2.6] we have
for Z=X\Y,

Gi \ A; = (X, Y7) \ S(Z U Preg, pen(Ds), Preg, gven(D:))
Since Z = X \ Y = X; \ Y}, we have
Gi = Gi \ A; = S(X;,Y:) \ Preg. pven(Di)

The U; computed by performing JM-ODD on G; must be of the form S(X;, Z;)
for Z; € Y; by induction and the attractor to U;, must be of the form S(X;, W;)
from Proposition Hence,

Gitv1 = S(X;, V) \ S(X;, W;) = S(X; \ W, Y \ W5).

(#7) We will show that if G; is of the form S(X,Y;), then G;;; is of the form
S(X,Y;,1) for Y;;1 €Y. In each iteration 4, the Audrey attractor to D; in G; is of
the form S(X, 4;). This shows that G., which is obtained by removing the Audrey
attractor S(X, 4;) from G, is of the form S(X;\ A;,Y;\ 4;). The procedure JM-ODD
on G; gives U; of the form S(X; \ W;,Y; \ W;) by induction, and Steven attractor
to the set S(X; \ W;,Y; \ W;) would be of the flowery subgame S(X; \ W;,Y; \ W;)
for some Wi' c W;. So, G;+1, which is obtained from removing this Steven attractor

from G; would be obtained as follows

Gir1 =G \ S(X; \ W;, Y, \ W) = S(X,Y; \ W;). O
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3.3 Concurrent parity games

We consider a concurrent stochastic version of parity games in this subsection [Sha53|
McN93, [dAHO0], to illustrate a corollary of Theorem [A| to the field of parity games
research. We consider the two player version as studied by Chatterjee, Alfredo and
Henzinger in [CAHI1]. For an exact definition of these concepts, we refer the reader
again to the work of Chatterjee, Alfaro, and Henzinger [CAHII] and restrict our-
selves to an informal discussion here. These games are played between Steven and
Audrey, but instead of partitioning the vertices among the two players, they take
simultaneous actions at each vertex and the token moves to a neighbour depending
on the actions of both players. The outcome is depicted in the form of a matrix,
where the columns represent Steven’s choice of actions, and the rows correspond to
Audrey’s choice. When both players at each turn pick a row and a column simulta-
neously, their outcome is determined by the entry of this matrix, where each entry
of this matrix is just another vertex of this game.

One might also consider a stochastic version, where the outcome of simulta-
neous actions is based on a pre-decided probability distribution. For the stochastic
version, each entry is a further probability distribution among the vertices. A token
is moved from a start vertex, based on the simultaneous choice that determines the
next vertex, thus creating an infinite play. This infinite play is then required to sat-
isfy the parity condition, that is, the highest priority seen must be even, for Steven
to win this play. Unlike the vanilla version of parity games, both players are allowed
to use a randomised strategy, i.e., a strategy where the next action is proposed with
the help of a probability distribution. A vertex is called limit-winning for Steven
(respectively Audrey) if for all €, Steven has a (randomised) strategy such that all
plays from that vertex obeying this strategy with probability at least 1. That is,
for all 0 < € < 1, there is a strategy that ensures with probability at least (1 — €)
that the path that obeys the strategy is winning for Steven. Note that turn-based
parity games can also be encoded as a concurrent parity game, where from Steven’s
vertices, Audrey’s actions do not affect where the token moves to the next and
vice-versa.

The decision question at hand is to determine whether a vertex is a limit-
winning for Steven. In concurrent parity games, unlike our definition of parity
games, a player might need both infinite memory and randomisation to win these
games. We refer the reader to the work of Chatterjee, Alfaro, and Henzinger [CAHTI]
for a rigorous definition of the above games along with examples for the claims above.

In their paper, they show that solving concurrent parity games is in NP N coNP as
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a corollary of the following theorem.

Theorem 3.3.1 ([CAHI1I, Theorem 5, Lemma 29 and Lemma 30]). Limit-winning
in a concurrent parity game can be expressed as a system of nested fixrpoint equa-
tions over the powerset lattice of the set of edges with alternation depth at most 2d
for a function, whose evaluation involves solving another system of nested fizpoint

equations also with depth at most 2d.

An easy corollary from Theorem [A] along with Theorem we have the

following.

Corollary 3.3.1.1. Limit-winning vertices of Steven and Audrey in concurrent par-

ity games can be determined in quasi-polynomial time.
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Chapter 4

The Strahler number of a parity

game

Strahler Number. The Strahler number of a rooted tree is the largest
height of a perfect binary tree that is its minor. This concept was initially introduced
by Horton (1945) and later formalised by Strahler (1952). They developed this
notion during their morphological exploration of river networks within the field of
hydrogeology. The Strahler number’s applicability isn’t limited to hydrogeology—it
has found relevance across various scientific disciplines, including botany, anatomy,
neurophysiology, physics, and molecular biology, all of which deal with branching
patterns. In the realm of computer science, Ershov [Ers58] recognised the Strahler
number as the minimum number of registers necessary to evaluate an arithmetic
expression. Subsequently, this concept has experienced numerous resurgences across
different domains within computer science. Notable surveys by Knuth [Knuf73],
Viennot [Vie90], and Esparza, Luttenberger, and Schlund [ELS16] have captured its

reappearance and importance within the computer science landscape.

Lehtinen’s algorithm for solving parity games. The major break-
through in the quest for a polynomial-time algorithm for parity games was achieved
by Calude, Jain, Khoussainov, Li, and Stephan [CJK+17], who gave the first quasi-
polynomial algorithm. Other quasi-polynomial algorithms have been developed soon
after by Jurdzinski and Lazi¢ [JLI7], and Lehtinen [LB20], and by Fearnley et
al. [FJAK"19).

Lehtinen’s algorithm provides a new parameter for parity games: the register
number. She further argued that games of bounded register number can be solved

in polynomial time. It was known that if the underlying graphs have bounded tree-
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width [Obd03, [FL11), [Ganl15, [Sta23], clique-width [Obd(07], DAG-width [BDHKO6],
Kelly-width [HKO07] and entanglement [BG04], the same holds. We make two re-
marks here, the first is that solving parity games is not in FPT for any of the above
parameters and the second remark—also made by Lehtinen—is that none of the
other parameters on the underlying graph co-incide with the register number of
parity games.

Czerwinski, Daviaud, Fijalkow, Jurdziniski, Lazi¢, and Parys [CDFE"19)] intro-
duced the concepts of universal trees and separating automata, and argued that all
the aforementioned quasi-polynomial algorithms were intimately linked to them. Cz-
erwinski et. al’s lower bound argument on Lehtinen’s algorithm varies from the oth-
ers. This can be attributed to Lehtinen’s algorithm producing a non-deterministic
parity automaton as a separating automaton as opposed to a deterministic safety
automaton of the other algorithms. The lowerbound is obtained indirectly by argu-
ing that the safety automaton that can be derived from a non-determinisitc parity
automaton with some good-for-separation properties has the lower bound induced
by universal trees.

Parys [Par20] has tried to reconcile this difference as well as offered some
running-time improvements to Lehtinen’s algorithm, but it remains significantly
worse than the bounds of Jurdzinski and Lazié¢ [JL17], as well as its Fearnley, Jain, de
Keijzer, Schewe, Stephan, and Wojtczak [FIJdK 19|, and the improvements proposed
by Dell’Erba and Schewe [DS22] as Lehtinen’s algorithm always requires at least
quasi-polynomial working space. Moreover, Parys [Par20]’s proposed method to
improve the runtime of Lehtinen’s algorithm re-defines the register game introduced

by Lehtinen and restricts the strategies of one player to “positional” strategies.

Our Contributions. This chapter contains work published by Daviaud
and Jurdzinski and the author in 2020 [DJT20]. Here, we propose the Strahler
number as a parameter that measures the structural complexity of dominia in a
parity game and that governs the computational complexity of the most efficient
algorithms currently known for solving parity games. We establish that the Strahler
number is a robust, and hence natural, parameter by proving that it coincides with
its version based on trees of progress measures and with the register number defined
by Lehtinen [Lehl18|, [LB20].

In this chapter, we give a natural characterisation of Lehtinen’s register num-
ber in terms of attractor decompositions and its trees. We recall verbatim the

definition of an attractor decomposition here for ease of reference.
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Attractor Decompositions. If G is a parity game in which all priorities do not

exceed a non-negative even number d then we say that
A = <A7 (Slﬂ A17A1)7 B (SfaAfa Af))

is a Steven d-attractor decomposition [DJL18, [DJL19| of G if:

e A is the Steven attractor to the (possibly empty) set of vertices of priority d
in G;
and setting G; = G\ A, for all i = 1,2,...,¢, we have:

e S; is a non-empty trap for Audrey in G; in which every vertex priority is at
most d — 2;

e A, is a Steven (d — 2)-attractor decomposition of subgame G N S;;
e A, is the Steven attractor to S; in G;;
e Gir1 =G\ Ay

and the game Gy, is empty. If d = 0 then we require that ¢ = 0.
Recall that if d is even and

A= <A7 (517A17A1)7' SRR) (SéaAbAZ))

is a Steven d-attractor decomposition then we define the tree of attractor decompo-
sition A, denoted by T4, to be the trivial ordered tree () if £ = 0, and otherwise, to
be the ordered tree (TAl,TAQ, . ,TAZ>, where for every ¢ = 1,2,...,/, tree Ty, is

the tree of attractor decomposition A4;.

Strahler Numbers of an Ordered Tree. The Strahler number Str (T)
of a tree T is defined to be the largest height of a perfect binary tree that is a minor
of T. Alternatively, it can be defined by the following structural induction: the
Strahler number of the trivial tree () = o is 1; and if T' = (T7,...,Ty) and s is the
largest Strahler number of trees T3, ..., Ty, then Str(7T) = s if there is a unique
such that Str(7;) = s, and Str(7T) = s + 1 otherwise. Recall that we denote the

trivial tree with one node () by o. For example, we have

str({(0%), 0", ((e))?)) =2
because Str (o) = Str({{(o))) =1 and Str(<o3>) = 2.
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Proposition 4.0.1. For every (n, h)-small tree T, we have Str (T') < h and Str (T') <
llgn]+1.

Strahler number of a parity game. We define the Strahler number of an at-
tractor decomposition A, denoted by Str (A), to be the Strahler number Str (7'4) of
its tree T 4. We define the Strahler number of a parity game to be the maximum of
the smallest Strahler numbers of attractor decompositions of the largest Steven and

Audrey dominions, respectively.

4.1 Strahler number bounds register number

In this section, we establish a connection between the register number of a parity
game defined by Lehtinen [Leh18] and the Strahler number thus defined. Moreover,
we argue that from every Steven attractor decomposition of Strahler number k, we
can derive a dominion strategy for Steven in the k-register game. Once we establish
the Strahler number upper bound on the register number, we are faced with the

following two natural questions:
Question 4.1.1. Do the Strahler and the register numbers coincide?

Question 4.1.2. Can the relationship between Strahler and register numbers be
exploited algorithmically, in particular, to tmprove the running time and space com-

plexity of solving register games studied by Lehtinen [Lehl18] and Parys [Par20]?

In Chapters [4| and [5| we answer them both positively (Lemma and
Theorem [B], and Theorem |C| respectively).

For every positive number k, a Steven k-register game on a parity game G is
another parity game Rk(g ) whose vertices, edges, and priorities will be referred
to as states, moves, and ranks, respectively, for disambiguation. The states of
the Steven k-register game on G are either pairs (v, {rs,71_1,...,71)) or triples
(v, {"ksTh—t1,---,71),P), Where v is a vertex in G, d = r, = rp_y = -+ 271 2 0, and
1 < p < 2k+ 1. The former states have rank 1 and the latter have rank p. Each
number r;, for i = k,k—1,...,1, is referred to as the value of the i-th register in the
state. Steven owns all states (v, (ry, 74_1,...,71)) and the owner of vertex v in G is
the owner of states (v, (7, 7k—1,---,71),p) for every p. How the game is played by

Steven and Audrey is determined by the available moves:

e at every state (v, (rg,74_1,...,71)), Steven picks 7, such that 0 < i < k, and re-

sets registers ¢,i—1,1—2, ..., 1, leading to state (U, <r;€, e ,7“,'-+1, r;, o,... ,0> ,p)
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of rank p and with updated register values, where:

2i if i 2 1 and max (r;, w(v)) is even,

2i+1 ifi=0,o0rifi=1and max(r;,m(v)) is odd;

r;- = max(rj, m(v)) for j =i+ 1, and re = m(v);
e at every state (v, (7, 7k_1,...,71),P), the owner of vertex v in G picks an edge
(v,u) in G, leading to state (u, (ry, rx_1,...,71)) of rank 1 and with unchanged

register values.

For example, at state (v, (9,6,4,4,3)) of rank 1, if the priority m(v) of vertex v is 5
and Steven picks ¢ = 3, this leads to state (v,(9,6,5,0,0),7) of rank 2i + 1 = 7
because max(r, 7(v)) = max(4,5) = 5 is odd, ry = max(ry, 7(v)) = max(6,5) = 6,
and 73 = 7(v) = 5.

Observe that the first components of states on every cycle in game Rk(g )
form a (not necessarily simple) cycle in parity game G; we call it the cycle in G
induced by the cycle in Rk(g) If a cycle in Rk(g ) is even (that is, the highest
state rank on it is even) then the induced cycle in G is also even. Lehtinen [Lehl8§),
Lemmas 3.3 and 3.4] has shown that a vertex v is in the largest Steven dominion in G
if and only if there is a positive integer k such that a state (v,7), for some register
values 7 is in the largest Steven dominion in Rk(g) Lehtinen and Boker [LB20,
a comment after Definition 3.1] have further clarified that for every k, if a player
has a dominion strategy in Rk(g ) from a state whose first component is a vertex v
in G, then they also have a dominion strategy in Rk(g) from every state whose first
component is v. This allows us to say without loss of rigour that a vertex v in G is
in a dominion in Rk(g ).

By defining the (Steven) register number |[Lehl18| Definition 3.5] of a parity
game G to be the smallest number k£ such that all vertices v in the largest Steven
dominion in G are in a Steven dominion in ’Rk(g ), and by proving the 1 + lgn
upper bound on the register number of every (n,d)-small parity game [Lehl8, The-
orem 4.7], Lehtinen has contributed a novel quasi-polynomial algorithm for solv-
ing parity games, adding to those by Calude et al. [CJK"17] and Jurdzinski and
Lazi¢ [JL17].

Lehtinen [Lehl8, Definition 4.8] has also considered the concept of a Steven
defensive dominion strategy in a k-register game (for brevity, we call it a k-defensive
strategy): it is a Steven dominion strategy on a set of states in Rk(g) in which there

is no state of rank 2k + 1. Alternatively, the same concept can be formalised by
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defining the defensive k-register game Dk(g ), which is played exactly like the k-
register game Rk(g ), but in which Audrey can also win just by reaching a state of
rank 2k + 1. Note that the game Dk(g ) can be thought of as having the winning
criterion for Steven as being a conjunction of a parity and a safety criteria, and the
winning criterion for Audrey as a disjunction of a parity and a reachability criteria.
Routine arguements allow to extend positional determinacy from parity games to
such games with combinations of parity, and safety or reachability winning criteria.

We follow Lehtinen [Leh18, Definition 4.9] by defining the (Steven) defensive
register number of a Steven dominion D in G as the smallest number k such that
Steven has a defensive dominion strategy in Rk(g ) on a set of states that includes
all (v,(rg,...,r1)) for v € D, and such that 7, is an even number at least as large
as every vertex priority in D. We propose to call it the Lehtinen number of a Steven
dominion in G to honour Lehtinen’s insight that led to this concept. We also define
the Lehtinen number of a vertex in G to be the smallest Lehtinen number of a
Steven dominion in G that includes the vertex, and the Lehtinen number of a parity
game as the Lehtinen number of its largest Steven dominion. We also note that the
register and the Lehtinen numbers of a parity game nearly coincide (they differ by
at most one), and hence the conclusions of our analysis of the latter also apply to

the former.

Lemma 4.1.3. The Lehtinen number of a parity game is no larger than its Strahler

number.

The arguments used in our proof of this lemma are similar to those used
in the proof of the main result of Lehtinen [Lehl8, Theorem 4.7]. Similar results
also appears in the author’s Master’s thesis [Thel9], which shows that the Strahler
number of a progress measure tree bounds the Lehtinen number. However, we pro-
vide a similar statement using attractor decompositions instead. Our contribution
here is to pinpoint the Strahler number of an attractor decomposition as the struc-
tural parameter of a dominion that naturally bounds the number of registers used

in Lehtinen’s construction of a defensive dominion strategy.

Proof of Lemma[{.1.3. Consider a parity game G and let d be the least even integer
no smaller than any of the priority in G. Consider a Steven d-attractor decompo-
sition A of G of Strahler number k. We construct a defensive k-register strategy
for Steven on Rk(g). The strategy is defined inductively on the height of T4,
and has the additional property of being G-positional in the following sense: if
((v, (Thy--57m1)), (v, (r;g, ... ,r'1> ,p)) is a move then the register reset by Steven

only depends on v, not on the values in the registers. Similarly, if the move
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(v, {rgy--.yr1),p), (u, {rp,...,7r1))) is such that v is owned by Steven, u only de-

pends on v and not on the values of the registers or p.

Strategy for Steven. If A = (A), then G is exactly the set of vertices
of priority d and of its Steven attractor. In this case, Steven follows the strategy
induced by the reachability strategy in A to the set of vertices of priority d, only
resetting register r; immediately after visiting a state with first component a vertex
of priority d in G. More precisely, the Steven defensive strategy is defined with the

following moves:

o ((v,(r1)),(v,{(r1),1)) if v is not a vertex of priority d in G;

o ((v, (r1)), (v, (7"1>,2)) if v is a vertex of priority d in G and r| = max(ry,d)
is even;
I . . . . . I
° ((v, (r1)), (v, <r1>,3)) if v is a vertex of priority d in G and r; = max(ry,d)

is odd (we state this case for completeness but this will never occur);

e ((v,{r1),p), (u,(r1))) where (v, u) belongs to the Steven reachability strategy

from A to the set of vertices of priority d in G.

Note that this strategy is G-positional.

Suppose now that A = (A, (S, A1, A1),...,(Se, Ap, Ap)) and that it has
Strahler number k. For all ¢ = 1,2,...,¢, let k; be the Strahler number of A,.
By induction, for all i, we have a Steven defensive k;-register strategy o;, which
is (G N S;)-positional, on a set of states ; in Rki(g N S;) including all the states
(v, (rki, R r1>) for v € S; and ry, an even number at least as large as every ver-
tex priority in S;. Let I'; be the set of states in Rk(g N S;) defined as all the
states (v,{(d,7)_1,...,7m1)) for v € S; if k; # k and as the union of the states
(v,{d,r}_1,...,7m1)) for v € S; and §;, otherwise.

The strategy o; induces a strategy on T'; in Rk(g N S;) by simply ignor-
ing registers ry,11,...,7%, and using (G N S;)-positionality to define moves from
the states not in §;. More precisely, in a state (v, (ry,...,71)), Steven resets reg-
ister j if and only if register j is reset in a state (v, <T;w e ,r'1>) of €; accord-
ing to o;. This is well defined by (G N S;)-positionality. Similarly, we add moves
((v, (s .. y7r1),p), (u,{rg,...,m1))) to the strategy if and only if there is a move
((v, (r;ﬁ., ey r'1> ,p') , (u, (r;%, ceey ri))) in ;. This is again well-defined by (GN S;)-
positionality.

This strategy is denoted by 7;. Note that 7; is a defensive k-register strategy

on I';, which is G-positional.
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The Steven defensive strategy in Rk(g ) is defined by the following moves,

where S denotes the set of vertices of priority d in G:

e On the set of states with first component a vertex of .5;, the moves are given

by ;.

e On the set of states with first component a vertex of A4; \ S;, Steven uses the
strategy induced by the reachability strategy from A; to S;, without resetting

any registers.

e On Rk(g N (A\S)), Steven uses the strategy induced by the reachability

strategy from A to S, without resetting any registers.
e On the set of states with first component a vertex of S,

— ((v, {74, ...,71)),(v,{d,0,...,0),p)) where v is a vertex in S and p = 2k
if max(ry,d) is even and p = 2k + 1 otherwise.

— ((v, {7, ...,7m1),p), (u,{rg,...,71))) for some uniquely chosen u such
that (v,u) in E if v is owned by Steven and for all u such that (v,u) in

FE if v is owned by Audrey.

Observe that this strategy is G-positional.

Correctness of the Strategy. We prove now that the strategy defined
above is indeed a defensive k-register strategy. We proceed by induction on the
height of T4 and define a set of states I, including all the states (v, (d,rp_1,...,71))
such that v is a vertex of G.

Base Case: If the height of T4 is 1 and A = (A), let T be the set of states
(v,{r1)) and (v,{r1),p) with v a vertex of G, 1 < r; < d and p being either 1 or 2.
It is easy to see that the strategy defined above is a defensive dominion strategy on
this set.

Inductive step: If A = (A, (S1,A1,A1),...,(Se, Ay, Ay)) with Strahler num-
ber k and k; being the Strahler number of A; for all ¢ (note that k; < k for all ¢,
and by definition of Strahler number, there is at most one m such that k,, = k),
we define I' to be the set comprising the union of the I'; and all the states of the
form (v, (rg,...,r1)) and (v,{rg,...,r1),p) with v a vertex of (A4; \ S;) U A and
1<p<2k.

Case 1: For each i, k; < k.

We first show that I' is a trap for Audrey for the strategy defined above,
showing that rank 2k + 1 can never be reached (implying that the strategy is defen-

sive). This comes from the fact that the register of rank k is only reset in a state
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(v, {r,...,m1)) with v in S. Since max(ry,d) = d is even then this leads to a state
(v,{(d,0,...,0),2k). Otherwise, register k is never reset, so a state with rank 2k + 1
cannot be reached.

Consider now any cycle in Rk(g ) with moves restricted to the strategy con-
structed above. If this cycle contains a state whose first component is a vertex of S,
then as explained above, the highest rank in the cycle is 2k. Otherwise, the cycle is
necessarily in Rk(g N S;) for some i. By induction, 7; is winning and so the cycle
is even.

Case 2: There is a unique m such that k,,, = k.

We first show that a state of rank 2k + 1 is never reached. Observe that
register k is reset in two places: (1) immediately after a state with first component
a vertex of S is visited, (2) if register k is reset by 7,,. In the first case, similarly as
shown above, a state of rank 2k is reached. In the second case, register k is either
reset in a state (v, (d,rx_1,...,71)), and similarly as above, a state of rank 2k is
reached, or in a state of §2;. In this case, as 7; is defensive on (); by induction, a
state of rank 2k + 1 cannot be reached, and the highest rank that can be reached is
2k.

Proving that every cycle is even is similar to the previous case. O

4.2 Strahler number is bounded by register number

In this section we prove that every parity game whose Lehtinen number is k£ has an
attractor decomposition of Strahler number at most k. In other words, we establish
the Lehtinen number upper bound on the Strahler number, which together with

Lemma [.1.3] provides a positive answer to Question [£.1.1] in the theorem below.
Theorem B. The Strahler number of a parity game is equal to its Lehtinen number.

When talking about strategies in parity games, we only considered positional
strategies, for which it was sufficient to verify the parity criterion on (simple) cycles.
Instead, we explicitly consider the parity criterion on infinite paths here, which we
find more convenient to establish properties of Audrey strategies in the proof of
Theorem [Bl

First, we introduce the concepts of tight and offensively optimal attractor

decompositions.

Definition 4.2.1. A Steven d-attractor decomposition A of G is tight if Audrey
has a winning strategy from at least one state in DS‘”‘(““)‘l(g) in which the value of
register Str (A) — 1 is d.
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By definition, the existence of a tight Steven d-attractor decomposition on a
parity game implies that the Lehtinen number of the game is at least its Strahler
number, from which Theorem [B| follows. Offensive optimality of an attractor de-
composition, the concept we define next, may seem less natural and more technical
than tightness, but it facilitates our proof that every game has a tight attractor

decomposition.

Definition 4.2.2. Let A = (A, (S1, A1, A1), ...,(Se, Ay, Ay)) be a Steven d-attractor
decomposition, let games G; for i = 1,2,...,£ be as in the definition of an attrac-
tor decomposition, let A; be the Audrey attractor of the set of vertices of priority
d—11in G;, and let Q,! =G\ A;. We say that A is offensively optimal if for every

i=1,2,..., 0, we have:
Str(Ai)—l(g()'
1)

o Audrey has a dominion strategy on DS“(A")(Q; \ S’Z-).

o Audrey has a dominion strategy on D

Proving that every offensively optimal Steven attractor decomposition is tight
(Lemma, and that every Steven dominion in a parity game has an offensively
optimal Steven attractor decomposition (Lemma , will complete the proof of
Theorem Bl We first give two propositions that will be useful in the proofs.

Proposition 4.2.3. For every parity game G and non negative integer k, if Audrey

has a dominion strategy from every state of Dk(g) then Audrey has a dominion
k

strategy on R"(G).

Proof. For every state s of Dk(g), Audrey has a winning strategy 7, on Dk(g )
starting in s. We construct a dominion strategy for her on Rk(g ): after every visit
to a state of rank 2k + 1, Audrey follows 7., where s is the first state that follows on
the path and whose rank is smaller than 2k + 1. This defines a dominion strategy
on Rk(g ). O

Proposition 4.2.4. If A = (A, (S1, A1, A1), ..., (Se, Ag, Ap)) is an offensively opti-
mal Steven d-attractor decomposition, then for everyi =1,2,...,£, Audrey has a do-

minion strategy on RStr(Ai)_l(gi) (and also a dominion strategy on DStr(Ai)_l(gi)).

Proof. Let i in {1,2,...,¢}. Consider the following strategy in DStr(Ai)_l(gi):

e On the set of states whose vertex components are in A;, Audrey follows a
strategy induced by the reachability strategy in A; to a vertex of priority d—1
(picking any move if v is of priority d — 1);

51



e In states whose vertex component is in G;, Audrey plays a (k — 1)-register
dominion strategy on DStr(Ai)_l(gé). Such a strategy exists by the definition

of offensive optimality.

Str(Ai)—l(gi), because any

This strategy is indeed an Audrey dominion strategy on D
play either visits a state whose first component is a vertex in A; infinitely often, or
it eventually remains in pStlA) _1(92). In the former case, the play visits a state
whose first component is a vertex of priority d — 1 infinitely often. In the latter case,
the strategy is a dominion strategy on DStr(Ai)_l(gé).

Finally, we use Proposition to turn this Audrey dominion strategy

on DStr(Ai)_l(gi) into an Audrey dominion strategy on RStr(Ai)_l(gi). O
Lemma 4.2.5. Every offensively optimal Steven attractor decomposition is tight.

Proof. Let the attractor decomposition A = (A, (S1, A1, A1),...,(Se, Ap, Ap)) be an
offensively optimal d-attractor decomposition of a parity game and let k = Str (A).
We construct a strategy for Audrey in Dk_l(g ) that is winning for her from at
least one state in which the value of register £ — 1 is d. We define Q,! and A; as in
Definition 2.2

Case 1: Str(A;) = k for some unique ¢ in {1,...,¢}. In this case, we show
that Audrey has a dominion strategy on Dk_l(gi). Since G; is a trap for Steven
in G, this gives the desired result. This directly follows from Proposition [4.2.4

Case 2: There are 1 <4 < j < £ such that Str(A4;) = Str (Aj) =k—-1. We
construct a strategy for Audrey in D" !(G) that is winning for her from all states
in G; whose register k£ —1 has value d. Firstly, since A is offensively optimal, Audrey
has a dominion strategy on Dk_l(g; \ Si), denoted by 7;, and a dominion strategy
on Rk_Q(gé), denoted by Ti, . Moreover, by Proposition 4.2.4) we have that Audrey
has a dominion strategy, denoted by 7;, on Rk_Z(Qj) (note that G; is a trap for

Steven in G). Consider the following strategy for Audrey in Dk_l(g ), starting from

a state whose vertex component is in gj and register k£ — 1 has value d:

e As long as the value of register k — 1 is larger than d — 1, Audrey follows the

strategy induced by 7;, while ignoring the value of register k — 1.
e If the value in register k£ — 1 is at most d — 1:

— In states whose vertex component is in A;, Audrey follows a strategy
induced by the reachability strategy from A; to a vertex of priority d — 1
(picking any move if the vertex has priority d — 1);
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— In states whose vertex component is in g; \ S; and whose register k — 2

has value at most d — 2, Audrey follows 7;;

— In states whose vertex component is in g; and whose register £ — 1 has
value d — 1, Audrey follows the strategy induced by TZ" , while ignoring the

value of regiser k£ — 1.

Audrey plays any move if none of the above applies.

We argue that this strategy is winning for Audrey in Dk_l(g ) from states
whose vertex component is in gj and register k — 1 has value d. Consider an infinite
path that starts in such a state. As long as register k — 1 has value d, Audrey
follows 7;. If Steven never resets register £ — 1 then Audrey wins. Otherwise, once
register £ — 1 has been reset, its value is at most d — 1. Note that G; is included in
A; U (QZ' \ S;). If register kK — 1 has a value smaller than d — 1, and the play never
visits a state whose vertex component is in A;, then Audrey has followed 7; along
the play (she has never left Q;v \ S; as the only way for Steven to go out Qé \ S; is
to go to A;) and wins. Otherwise, the play visits a state whose vertex component
is in A;, and so it visits a state whose vertex component has priority d — 1, leading
to a state in which register £ — 1 has value d — 1. Finally, if a state whose vertex
component is in Ag is visited infinitely many times then Audrey wins. Otherwise,
Audrey eventually plays according to 7'2-' . If Steven never resets register k£ — 1 then
Audrey wins. Otherwise, if Steven resets register k£ — 1, which at this point has

value d — 1, a state of rank 2k — 1 is visited and Audrey wins. O

Lemma 4.2.6. Fvery Steven dominion in a parity game has an offensively optimal

Steven attractor decomposition.

Proof. Consider a parity game G whose vertices form a Steven dominion. Let k be
the Lehtinen number of G and let d be the largest even value such that 7r_1({d7 d -
1}) # @. We construct an offensively optimal Steven attractor decomposition by
induction.

If d = 0, it is enough to consider {A), where A is the set of all vertices in G.

If d > 1, let A be the Steven attractor of the set of vertices of priority
din G. Let Gg = G\ A. If Gy = @ then (A) is an offensively optimal Steven
attractor decomposition for G. Otherwise, Gy is a non-empty trap for Steven in G
and therefore Gy has a Lehtinen number at most k. Let A' be the Audrey attractor
of all the vertices of priority d — 1 in the sub-game G, and let g(') =Gp \ A

Given a positive integer b, let L’ be the largest dominion in g(’) such that
Steven has a dominion strategy on Db(gé). We define m to be the smallest number
such that L™ # @ and let Sy = L™. We show that m < k. To prove this, we
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construct an Audrey dominion strategy on Db(go) for all b such that L’ = @. Since
the Lehtinen number of Gy is at most k, this implies that m < k. The Audrey

dominion strategy on Db(go), assuming L' = @, is as follows

e if the vertex component of a state is in A' then Audrey uses the strategy in A

induced by the reachability strategy to vertices of priority d — 1;

e if the vertex component of a state is in g(’) then Audrey uses her dominion
strategy on Db(gé), which exists because the Steven dominion L’ in Db(g('))
is empty.

Any play following the strategy defined above and visiting infinitely often a state
of Db(go N AI) is winning for Audrey. A play following the above strategy and
remaining eventually in Db(gé) is also winning for Audrey.

Let Ag be the (d — 2)-attractor decomposition of Sy obtained by induction.
In particular, Ay is offensively optimal.

Let Ay be the Steven attractor to Sy in Gy and let G; = Gy \ Ag. Subgame G,
is a trap for Steven and therefore it is a Steven dominion. Consider an offensively
optimal Steven d-attractor decomposition A' = (@, (Sy, A1, A1), ..., (Se, Ap, Ay)) of
G1 obtained by induction.

We claim that A = (A, (S, Ag, Ag), (51, A1, A1), ...,(Se, Ag, Ap)) is an of-
fensively optimal Steven d-attractor decomposition of G. Since A s offensively

optimal, it is enough to show that:
e Audrey has a dominion strategy on DS“(AO"l(g{)),
e Audrey has a dominion strategy on DStr(AO)(g(') \ SO).

Since Ay is offensively optimal, Audrey has a winning strategy from at least
one state in DStr(AO)_l(SO), by Lemma and hence m = Str (Ap).
So, by choice of m, Steven does not have a defensive dominion strategy on

DS“(AO)_l(Qé) from any state. This means that Audrey has a dominion strategy
on DS“(AO)‘l(g{)).

Moreover, by construction of Sy, Audrey has a dominion strategy on the

subgame Dm(gf) \ So). This implies that Audrey has a dominion strategy on the
subgame DSH(AO)(% \ SO). O

4.3 Strahler number of progress measures

Consider a parity game G in which all vertex priorities are at most an even number d.
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If (L, <) is a well-founded linear order then we write sequences in L2 in

the following form (mg_1,mg_3, ..., m1), and for every priority p € {0,1,...,d}, we
define the p-truncation of (mg4_1,m4-3, ..., m1), denoted by (mg_1, mg—3, ..., m1)|p,
to be the sequence (md_l, ey Mo, mp) if p is odd and (md_l, ey Mipes, mp+1) if p

is even. We use the lexicographic order <o to linearly order the set L* = U?:o L.
A Steven progress measure [EJ91], Jur00, [JL17] on a parity game G is a map
V- L2 such that for every vertex v € V:

e if v € Vzyen then there is a p-progressive edge (v,u) € F;

o if v € Vqq then every edge (v,u) € F is p-progressive;
where we say that an edge (v,u) € FE is u-progressive if:

o if m(v) is even then p(v)|r(v) Z1ex #()|x(v);

o if m(v) is odd then p(v)|r(v) >tex #(1)|x(v)-

We define the tree of a progress measure p to be the ordered tree generated by the

image of V under p.

Theorem 4.3.1 ([EJ91], [Jur00, JL17)). There is a Steven progress measure on a
parity game G if and only if every vertex in G is in its largest Steven dominion. If

game G is (n,d)-small then the tree of a progress measure on G is (n,d/2+1)-small.

We define the Steven progress-measure Strahler number of a parity game G
to be the smallest Strahler number of a tree of a progress measure on G. The
following theorem refines and strengthens Theorems and by establishing
that the Steven Strahler number and the Steven progress-measure Strahler number

of a parity game nearly coincide.

Theorem 4.3.2. The Steven Strahler number and the Steven progress-measure

Strahler number of a parity game differ by at most 1.

The translations between progress measures and attractor decompositions
that are used in the proof are as given by Daviaud, Jurdziniski, and Lazié¢ [DJL1S];
here we point out that they do not increase the Strahler number of the underlying

trees by more than 1.

Proof of Theorem[[.53.3. Let G be a (n,d)-small parity game. To prove Theo-
rem we will prove the following two lemmas.
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Lemma 4.3.3. If G is a parity game where all the vertices belong to Audrey and
G has a Steven attractor decomposition of Strahler number k, then it has a Steven

progress measure of Strahler number at most k + 1.

Proof. Let G be a parity game where all the vertices belong to Audrey. The proof

is by induction on the height of the tree of a Steven attractor decomposition of G.

Inductive statement. Given a d-attractor decomposition A of G and its
tree T4 of height h, there is a progress measure tree 7 of height A and an embedding
f from T4 to T such that all the nodes of 7 which are not in the image of f are

leaves.

Base case. If the height of T is at most 1, then the d-attractor decompo-
sition is (A). Let C be the set of vertices, which do not have priority d. Consider
the topological order: u < v if there is a path from v to u in A. We consider the
tree <O|C|> and p, which maps the vertices of priority d to its root and the vertices
in C to leaves, respecting the topological order, i.e. if u < v then u is mapped to
a node that is a larger sibling of the node v is mapped to. This defines a progress

measure of Strahler number at most 2.

Induction step. Consider a Steven-d-attractor decomposition:
A = <A7 (517A17A1)7 KRN (SjaAjaAj)> .

Let T4, be the tree of A; and G; as defined in the definition of an attractor decom-
position.

Inductively, for all 4, there is a progress measure tree 7; (and an associated
progress measure mapping ;) of the same height as 7, and an embedding f; from
T4, to T; such that all the nodes of 7; which are not in the image of f; are leaves.

Let us construct a progress measure tree for G as follows. Let C; = A; \ S;

for each ¢ and C' be the set of nodes in A that have priority at most d — 1. Set:
T - <O|C|’7~170|Cl|7‘”’7},O|CJ‘|>.

Set 11 to be a mapping from the set of vertices of G to the nodes of T, which
extends u; on vertices in .S;, maps the vertices of priority d to the root of the tree,
the vertices in C' to the first |C| children of the root and the vertices in C; to the
corresponding |C;| children of the root which respects the topological ordering in G

as viewed as a graph, i.e. if for vertices v and v in C, resp. Cj, there is a path from
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u to v in C, resp. C;, then w is mapped to a node that appears on the right of the
node v is mapped to.

By construction and induction hypothesis, the tree 7 embeds T4 and the
only nodes that are not images of nodes in T4 are leaves. Moreover, T is a progress
measure tree with mapping u by induction hypothesis and the construction, which
is compatible with the Steven reachability strategy on A and the A;’s.

The lemma follows from the fact that the Strahler number of a tree increases

by at most 1 when leaves are added to it. O

Lemma 4.3.4. If G has a Steven progress measure of Strahler number k, then it

has a Steven attractor decomposition of Strahler number at most k.

Proof. We will prove the following by induction, which proves the lemma:

Inductive statement. Given an (n,d)-small parity game G where d is
even and a progress measure tree 7 on G, there exist a Steven attractor decompo-

sition whose tree embeds in 7.

Remark 1. Given a progress measure mapping p on G and its corresponding progress
measure tree T, and given a trap R for Audrey in G, the restriction of u to the ver-
tices in R s a progress measure with the tree induced by the nodes images of the

vertices of R by p.

Base case. For games with one vertex, any progress measure tree on G
and any tree of a Steven attractor decomposition are (). Therefore the induction

hypothesis is satisfied.

Induction step. Let G be an (n,d)-small parity game where d is the least
even integer no smaller than any priority in G and let 7 be a progress measure tree

on G.

Case 1: If the highest priority in G is even and equal to d. Let A be the Steven
attractor of the set of vertices of priority d. Let ¢ =g \ A. As G isa trap for
Audrey in G, the tree 7" induced by the nodes images of the vertices in G'inTisa
progress measure tree of g By induction hypotheses, there exist a Steven attractor
decomposition A of G' whose tree T4 embeds in T By appending A to A, one gets

a Steven attractor decomposition of G of same tree T4, which then embeds in 7.

Case 2: If the highest priority in G is odd and equal to d — 1.

57



No vertex is mapped to the root in the progress measure tree 7. Let
To,T1,- .., T; be the subtrees, children of the root of 7. Let us note that vertices of
priority d — 1 cannot be mapped to nodes in 7, as they would not have progressive
outgoing edges if that was the case. Let Sy be the set of vertices mapped to nodes
in Ty and let Ay be the Steven attractor of Sy in G. We can assume that S is
non-empty (otherwise we remove 7, from 7 and start again).

Let G' =@ \ Ag. As Gisa subgame, trap for Audrey, the tree T with sub-
trees Ti,...,7; is a progress measure tree on g By induction, one gets a Steven

attractor decomposition:
A, = <®7 (SI7A17A1)7 RN (S]7A]7A])>

whose tree embeds in 7.

Now, let us prove that Sy is a trap for Audrey. Let u be in Sy and v be one
of its successor. For (u,v) to be progressive, v has to be mapped to a node in 7
and is then in Sjy. Since there is always an outgoing progressive edge for Steven’s
vertices and all edges of Audrey’s vertices are progressive, we can conclude that S,
is a trap for Audrey, is a sub-game, and 7; is a progress measure tree on it. By
induction, one gets a Steven attractor decomposition A, of Sy, whose tree embeds
in Ty.

We have proved that:

A = <®’ (‘S’OaAO’AI)’ (SlaAbAl)?' ) (S],AjaA])>

is a Steven attractor decomposition of G whose tree embeds in 7. O

Lemma [£:3.4] gives one direction of the theorem. For the reverse direction,
consider G a parity game and A a Steven attractor decomposition of Strahler number
k. This decomposition induces a winning strategy for Steven (with exactly one edge
going out of any vertex owned by Steven in G). Consider the restriction of G to this
Steven strategy. This is a game where all the vertices belong to Audrey, and which
has A as a Steven attractor decomposition. We can apply Lemma and obtain
a Steven progress measure of Strahler number at most k + 1. The progress measure

thus obtained is also a progress measure of G, which concludes the proof. O
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Chapter 5

Strahler universal trees

Having established the equivalence of the Strahler number of a parity game to its
Lehtinen number, we shift our attention to tackle Question which asks if the
space complexity of solving register games by Lehtinen [LB20] and Parys [Par20]
can be improved.

We give a construction of small Strahler-universal trees that, when used with
the progress measure lifting algorithm of Jurdzinski and Lazié¢ [Jur00, JL17] or with
the Jurdzinski-Morvan algorithm [JMT22], yields algorithms that work in quasi-
linear space (linear if we exclude poly-logarithmic factors) and quasi-polynomial
time. Moreover, usage of our small Strahler-universal trees allows to solve parity
games in polynomial time for a wider range of asymptotic settings of the two natural
structural complexity parameters (number of priorities d and the Strahler/register
number k) than previously known, and that covers as special cases the k = O(1)
criterion of Lehtinen [Lehl8] and the d < lgn and d = O(logn) criteriaof Calude et
al. [CJK"17], and of Jurdziriski and Lazi¢ [JLI7], respectively.

Our approach is to develop constructions of small ordered trees into which
trees of attractor decompositions or of progress measures can be embedded. Such
trees can be seen as natural search spaces for dominion strategies, and existing meta-
algorithms such as the Jurdzinski-Morvan [JMT22] algorithm and progress measure
lifting algorithm [Jur0Q, JL17] can use them to guide their search, performed in time
proportional to the size of the trees in the worst case.

Recall that an ordered tree is universal for a class of trees if all trees from
the class can be embedded into it. The innovation offered in this chapter is to
develop optimised constructions of trees that are universal for classes of trees whose
complex structural parameter, such as the Strahler number, is bounded. This is in

contrast to less restrictive universal trees introduced by Czerwiriski et al. [CDF"19)
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and implicitly constructed by Jurdzinski and Lazié¢ [JL17|, whose sizes therefore
grow faster with size parameters, leading to slower algorithms.

Firstly, we give an inductive construction of Strahler-universal trees and
an upper bound on their numbers of leaves. Secondly, we provide a succinct bit-
string labelling of the Strahler-universal trees, and give an alternative and more
explicit characterization of the succinctly-labelled Strahler-universal trees. Thirdly,
we argue how the succinct bit-string labelling of Strahler-universal trees facilitates
efficient computation of the so-called “level-p successors” in them, which is the key
computational primitive that allows using ordered trees to solve parity games. The
constructions and techniques we develop here are inspired by and significantly refine
those introduced by Jurdzinski and Lazi¢ [JL17]. Finally, we also give a lower bound
on the size of a Strahler-universal tree, showing that our constructions are optimal
and also that efforts in improving Lehtinen’s algorithms using Strahler-universal

trees fail.

5.1 Strahler-Universal Trees and Their Sizes

Recall that we had define the embedding of an ordered tree in Chapter[2] Also recall
that an ordered tree is (n, h)-universal |[CDE19)] if every (n, h)-small ordered tree
can be embedded in it. We define an ordered tree to be k-Strahler (n, h)-universal if
every (n, h)-small ordered tree whose Strahler number is at most k can be embedded
in it, and we give a construction of small Strahler-universal trees.

We first give a gentle introduction behind the construction of k-Strahler
(n, h)-universal trees (Ulzn’h). These are constructed with the help of what we call
weak k-Strahler (n, h)-universal trees. A tree is said to have Weak Strahler number
E if the maximum of the Strahler number of its (strict) subtrees is k — 1. Weakly
Strahler Universal trees (Vllgcmh) are trees that can embed any tree with at most n
leaves, height at most h, and weak Strahler number at most k.

If a tree has Strahler number k = 1 or if it has only one node (Ign = 0), then
the k-Strahler (n,h)-universal tree as well as the weak k-Strahler (n,h)-universal
tree is just the trivial tree. If instead, the size of the height of the tree is equal to
the Strahler number, then the k-Strahler (n,h)-universal tree is just the same as
the weakly k-Strahler (n, h)-universal tree. If not, then the weak k-Strahler (n, h)-
universal tree would consist of two copies of the weakly k-Strahler (n/2, h)-universal
tree on either side of a k—1-Strahler (n, h—1)-universal tree attached to the root (as
depicted in Fig. . This is because there is at most one child of a tree with n leaves

will have over n/2 leaves and therefore this tree would be able to embed any tree
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of weak Strahler number k with n leaves and height h. Moreover, all children have

Strahler number at most k — 1. We finally define the k-Strahler (n, h)-universal tree

Weakly k-Str. k — 1-Strahler Weakly k-Str.
(n/2, h)-Universal (n, h — 1)-Universal (n/2, h)-Universal

Figure 5.1: Construction of a weakly k-Strahler (n, h)-Universal tree where h = k =
2 and there are at n is at least 2.

in such cases of h = k = 2 as the tree obtained by adjoining two copies of the weakly
k-Strahler (n,h)-universal trees on either side of a k Strahler (n,h — 1)-universal

tree attached to the root.

Weakly k-Str. k-Strahler Weakly k-Str.
(n, h)-Universal (n, h — 1)-Universal (n, h)-Universal

Figure 5.2: Construction of a k-Strahler (n,h)-Universal tree where h = k = 2 and
there are at n is at least 2.

Definition 5.1.1 (Trees Utlfh and Vt’fh) For allt = 0, we define trees Ut]?h (for all h
and k such that h 2 k =2 1) and V,fh (for all h and k such that h = k = 2) by mutual
induction:

1 ifh=k=1 then U}, = ();
2. ifh>1and k=1 then US, = (Ufy_1);

3. ifhzk>2andt =0 then Uy, = Viy = (UL );

) )

Joifhzk=2andt > 1 then Vi = V& - (USL) - Vi s
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5 ifh=kz=2andt =1 then USy = Vi
6. ifh>k=2andt>1 then US, = V0, - (Ubho1) - Vi

Recall that for g = 1, we defined I, to be the that is the tree
with exactly one leaf, of height g. It is routine to verify that if h 2k =1ort =0
then Uy = I, and if h > k = 2 and ¢ = 0 then V', = I,.

Lemma 5.1.2. For alln =21 and h 2 k = 1, the ordered tree ULklgnJ

(n, h)-universal.

1 18 k-Strahler

Proof. We say that a tree has weak Strahler number at most k if every subtree rooted
in a child of the root has Strahler number at most £ — 1. A tree is then weakly
k-Strahler (n,h)-universal if every (n,h)-small ordered tree whose weak Strahler
number is at most k can be embedded in it. We proceed by induction on the
number of leaves in an ordered tree and its height, using the following strengthened

inductive hypothesis:

k

o foralln = 1and h =k = 1, ordered tree U}y, is k-Strahler (n, h)-universal;

e foralln =21 and h 2 k = 2, ordered tree V[]fgnj,h is weakly k-Strahler (n,h)-

universal.

Let T be an (n, h)-small ordered tree of Strahler number at most k. If n = 1,
h =1, or k =1, then T is the trivial tree (with just one leaf) of height at most h,
and hence it can be embedded in Uﬁg -
if h 2k =2andn =1, then T is the trivial tree of height at most h, and hence it

can be embedded in Vllfg n),n = In, the trivial tree of height h.

1 = Ip, the trivial tree of height h. Likewise,

Otherwise, we have that T = (T Tyeens TJ> for some j = 1. We consider two
cases: either Str(7;) < k—1foralli=1,...,5, or there is ¢ such that Str (7,) = k.
Note that the latter case can only occur if h > k.

If Str (T;) s k—1foralli=1,...,7, then we argue that T' can be embedded

in VL’fgnJ,hv and hence also in Uﬁgnm, because VL’fgnLh can be embedded in U[klg nlh DY

definition (see items[3], 5], and [6] of Definition [5.1.1]). Let p (a pivot) be an integer

such that both trees T' = (T1,...,T)-1) and T" = (Tpe1,....Ty) are (|n/2],h)-

small. Then by the strengthened inductive hypothesis, each of the two trees T

and T" can be embedded in tree VL’fgLn/2JJ,h = VL]fg nl-

in Uﬁghh_l. It then follows that tree T = T' - (T,,) - T" can be embedded in
k k k-1 k
V[lgnj,h = Vi_lgnj—l,h ) (UngnJ,h—1> : Vi_lgn]—l,h‘

If Str (Tq) = k for some ¢ (the pivot), then we argue that 7' can be em-

bedded in UﬁgnJ,h. Note that each of the two trees T' = (Ty,...,T,—1) and T" =

1h and tree T;, can be embedded
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<Tq+1, .. ,TJ) is (n, h)-small and all trees T, ..., T,_1 and Tg4q, . .., Tj have Strahler
numbers at most k — 1. By the previous paragraph, it follows that each of the two
trees T' and T" can be embedded in ‘/[Ifgnj,h' Moreover, tree Ty, is (n, h—1)-small and

hence, by the inductive hypothesis, it can be embedded in Uﬁg n)h—1- 1t follows that

tree T' = T'~(Tq>-T" can be embedded in UﬁgnLh = ‘/|_lfgnJ7h'<U|_klgnj,h—1>'v|'_lfgnj,h' ]

Lemma 5.1.3. For allt =2 0, we have:
. k
e ifh =k =1 then leaves (Ut,h) =1;

e if h =2 k =2 then leaves (Ut’fh) < 2t+k(t;l$2)(zj)'

Proof. The proof is by structural induction, where the inductive hypothesis contains
both the statement that for all ¢ 2 0 and h = k = 2, we have:

t+k-2\[h-1
leaves(Ufh) < 2t+k( k-9 )(k—l)’ (5.1)

and that for all ¢ 2 0 and h = k = 2, we have the following analogous bound on the

k
number of leaves of trees V;,:

k tik—1(t+k—=2\[h -2
leaves(Vm) <2 ( k-9 )(l{:—2>' (5.2)
The following cases correspond to the six items in Definition [5.1.1

1. If h =k =1 then leaves(Ut]fh) = leaves (()) = 1.

2. If h > 1 and k = 1 then a straightforward induction on A can be used to show
that leaves (Utlfh) =1

3.If h 2 k =2 2 and ¢ = 0 then, again, a straightforward induction on h

yields that leaves (Vtkh) =1« 2t+k_1(t;;’i;2)(2:§) and leaves(Utkh) =1<
2t+k(t+k—2)(h—1) 7 ’
k-2 J\k-1/

4. Suppose that h =2 k=2 and ¢t = 1.

Firstly, for h 2 k = 2 and t = 0, we slightly strengthen the inductive hypothe-

sis (5.2)) to:
t+1

leaves(Vt?h) <2 -1, (5.3)

which we prove by induction on . Indeed, for ¢ = 0 it follows from item
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above, and for t = 1, we have:
leaves (Vt?h) = leaves (Utl’h_l) + 2 - leaves (1/;2_17,1)

) t\[h -2
< 1+2(2(t ”*1—1) =9l < 2“1(0>( 0 )

where the first inequality follows from items [I} or Pl above, and from the
strengthened inductive hypothesis (5.3)).

Secondly, for h 2 k = 3 and t = 1 we have:
leaves (thfh) = leaves (Uf;ﬁl) + 2 - leaves (‘/;fkil,h)
t+k-1(t+k—=3\[h -2 t+k—2(t+k—=3\[h -2
s 2 ( k-3 )(k—2)+2'2 ( k-2 )(k—2)
_ e[ [t h=3)  [t+k=3)](n-2
- k-3 k-2 k—2
_ t+k—1 t+k'—2 h—2
=2 k-2 |\k-2]

where the first inequality follows from the inductive hypothesis and the last

equality follows from Pascal’s identity.

5. Suppose that h =k = 2 and t = 1. Then we have:
k k k-1[t+k—=2\[h—2
leaves(Uth) = leaves(Vt’h) < 2" ( k-2 )(k—Z)

t+k t+]€_2 h—l
<2 ( k-2 )(k—l)’

where the first inequality follows by the inductive hypothesis and the other

one from h = k.

6. Suppose h > k =2 and t =2 1. Then we have:

leaves (Utkjh) leaves (Ut h— 1) +2- leaves Vt h)

T sl Vi) PR A
()]
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where the first inequality follows from the inductive hypothesis and the last
equality follows from Pascal’s identity. .

Theorem 5.1.4. For k < lgn, the number of leaves of the k-Strahler (n,h)-

universal ordered trees U[ , which is poly-

lgn],
nomial in n if k-lg(h/k) = O(logn). In more detail, the number is at most

nm . (h/k)k, where ¢(n) = 5.45 if k < lgn, ¢(n) = 3+ 0o(1) if k = O(logn), and
c(n) =1+0(1) if k = O(1).

Remark 2. By Proposition[{.0.1 and Lemmal[5.1.2, for all positive integers n and h,
the tree ULLIg nJJJ;Ll is (n, h)-universal. Theorem|5.1.4| implies that the number of leaves
of Ullgg;z J+1 is nlg(h/lgn)+(’)(1)
(n, h)-universal trees of Jurdziniski and Lazi¢ [JL17, Lemma 6]. In particular if
h = O(logn) then lg(h/lgn) = O(1), and hence the number of leaves of U Ugnlt1

lign],h
polynomzial in n.

, which matches the asymptotic number of leaves of

Proof of Theorem [5.1.7) By Lemma ordered tree UU n),p 18 k-Strahler (n, h)-

Briusgein),

We analyze in turn the three terms 2UgnJ+k, (Ug’zj_;k_?), and (Zj) Firstly,

we note that

universal. By Lemma|5.1.3] its number of leaves is at most 2

lisntt _ of i)

where pi(n,k) = 1 + k/lgn, because of = phllem, Secondly, k < lgn implies that
lgn] + k — 2 < 21gn, therefore we have

1 +k-2
(I.gnkJ;_Q )<221gn _ ’I’L2

and hence

(L lgn] +/2~€ ) _ Oy

where po(n, k) < 2. Thirdly, applying the inequality (;) < (ei/§) to the binomial

coefficient (Z), we obtain (Zj) < (Z) < (eh/k:)k = QkIg(Eh/k), and hence

h—-1 n
(k‘ - 1) = O(n?* ")

where

pa(n,h, k) = klg(eh/k)[lgn = klg(h/k)/lgn + klge/lgn.
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Note that if we let p(n,h,k) = pi(n,k) + pa(n, k) + p3(n,h, k) then the
number of leaves in trees Uﬁgn],h is (’)(np(n’h’k)). Since k < lgn implies k/lgn < 1
and klge/lgn < lge, we obtain

p(n,h, k) < klg(h/k)/lgn+4+1ge < klg(h/k)/lgn + 5.45

and hence the number of leaves in trees U[klg nlp 18

nk’lg(h/k)/lgn+(9(1).

If we further assume that & = O(log n) then the constant 5.45 can be straight-
fowardly reduced to 3+ (1) because then k/lgn and klge/lgn are O(1). Moreover,

the estimate
llgn]+ k-2 9
( k-2 700

can be improved with further assumptions about & as a function of n; for example,
if &k = O(1) then (ngzj_gk_?) is only polylogarithmic in n and hence (ngzj_+2k—2) is
no(l), bringing 3 + o(1) down to 1 + o(1). O

5.2 Labelled Strahler-Universal Trees.

Recall the |bit-string orderinglon W = {0,1}*. For a bit string 8 € W, we write ||
for the number of bits in the string. For example, we have |¢| = 0 and |010]| = 3,
and |11] = 2. Suppose that {f;, 3;_1,...,/31) is a node in a W-labelled ordered
tree. Then if 8; = bf for some j = 1,2,...,4, b € {0,1}, and 8 € W, then we
refer to the first bit b as the leading bit in (3, and we refer to all the following bits

in 8 as non-leading bits in ;. For example, node (e, 010, ¢, €, 11) has two non-empty
strings and hence two leading bits, and it uses three non-leading bits overall, because
[010] + |11| =2 = 3.

For a bit b € {0,1} and £ = ((81,L£1),...,(Be, L)), a W-labelled ordered
tree , we define [.C]b to be the W-labelled ordered tree £ = ((bB1,L1),- .., (b8, Ly)).
In other words, [E]b is the labelled ordered tree that is obtained from £ by adding
an extra copy of bit b as the leading bit in the labels of all children of the root of L.

The inductive structure of the next definition is identical to that of Defini-
tion and hence labelled ordered trees Z/{f, », and Vf, , defined here are labellings
of the ordered trees Utkj  and thfh, respectively.

Definition 5.2.1 (Trees Z/{t]fh and Vtk,h)' For allt = 0, we define W-labelled ordered
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trees Z/{ﬁh (for all h and k such that h = k = 1) and Vf’h (for all h and k such that

h =z k = 2) by mutual induction:
1oifh=k=1 thenU, = {);
2. ifh>1and k=1 then Uy = ((e.Upp-1));

S.ifh 2k =2andt =0 then Vi) = ((e,Uf3ly)) and Uy = [V,ffh]o =
((0.u452))):

Joifhzkz2andt>1 then Vi, = [VEL] - (e ufit)) - [VEA]

0
5. ifh=k=2andt>1 then Uy, =[Viy] ;

)

6. ifh>kz2andt> 1 thenttfy = [VE] - ((e.tfny)) - [VE] -

The inductive definition of labelled ordered trees Zx[fj n and V,ff n makes it
straightforward to argue that their unlabellings are equal to trees Ut]f , and th,
respectively, and hence to transfer to them the Strahler-universality established in
Lemma[5.1.2)and upper bounds on the numbers of leaves established in Lemmal[5.1.3]
and Theorem We now give an alternative and more explicit characterization
of those trees, which will be more suitable for algorithmic purposes. To that end,
we define W-labelled trees Bf} , and Cf, » and then we argue that they are equal to
trees Z/{t’f 5, and Vt’f n, respectively, by showing that they satisfy all the recurrences in

Definition B.2.11

Definition 5.2.2 (Trees B}, and Cfy). For allt 2 0 and h = k > 1, we define

W-labelled ordered trees Bf’h as the tree generated by sequences (Bn_1,...,31) such
that:

1. the number of non-empty bit strings among Bn_1, -.., B isk —1;

2. the number of bits used in bit strings S,_1, ..., B1 overall is at most (k—1)+t;
and for every i =1,..., h —1, we have the following:

3. if there are less than k — 1 non-empty bit strings among Bp_1, - .., Bis1, but

there are t non-leading bits used in them, then B; = 0;

4. if all bit strings B;, ..., B are non-empty, then each of them has 0 as its
leading bit.

For allt 20 and h 2 k 2 2, we define W-labelled ordered trees th as the
tree generated by sequences {f_1,...,[51) such that:
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1. the number of non-empty bit strings among Br_s, ..., B is k —2;
2. the number of bits used in bit strings Bn_1, ..., 31 overall is at most (k—2)+t;
and for everyi=1,...,h — 1, we have the following:

3. if there are less than k — 2 non-empty bit strings among Bp—o, ..., Biy1, but

there are t — | By,—1| non-leading bits used in them, then 3; = 0;

4. if all bit strings B;, ..., B are non-empty, then each of them has 0 as its
leading bit.

Lemma 5.2.3. Forallt=0 and h 2 k =1, we have Z/{f,h = Bf,h.

The following corollary follows from Lemma [5.2.3] and from the identical
inductive structures of Definitions 5.1.1] and £.2.1]

Corollary 5.2.3.1. For allt 20 and h 2 k = 1, the unlabelling of Bf,h s equal to
k
Uih-

The next proposition formalizes the following non-rigorous interpretation of

the difference between trees Bf, , and Cﬁ Bt

e If a sequence (f_1,...,01) is a node in Bf,h then the bit string 8;_; can
be either empty or non-empty, and if it is non-empty then its first bit is the

leading bit.

e On the other hand, if a sequence {f3j,_1,..., /1) is a node in Ct’fh then the bit
string B5,_1 is always to be understood as non-empty. It can be thought of as
obtained by removal of its “original” leading bit in the corresponding leaf in

tree Bf’; n, and hence it consists only of (possibly zero) non-leading bits.

Proposition 5.2.4. For allt =21 and h =2 k = 2, we have:

1. if h =k then (By_1,...,B1) is a leaf in Ct’fh if and only if (0Bn-1,Bn_2,---,51)
is a leaf in Bf’h;

2. if h > k then for both b € {0,1}, we have that (By_1,...,51) is a leaf in Cfih
if and only if (bBr-1,Bn-2,-..,51) is a leaf in Bf,h;

3. {e,Bn_a,...,P1) is a leaf in Cf’h if and only if (Bh_a,...,B1) is a leaf in Bf’;il.

Proof of Lemma[5.2.3. We argue that trees Bﬁ n and Cﬁ p, satisfy all the recurrences
in Definition |5.2.1| that involve trees Z/{f, 5, and Vf n, respectively.
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w

W

. If h =k =1 then tree Bﬁh is the trivial tree ().

.If h > k =1 then Bf,h has only one leaf (Eh_1>, and hence we have Bﬁh =
k
(e Bra-a)).

. Suppose that h =2 k = 2 and ¢t = 0. Then Bﬁ n has exactly one leaf, which

is of the form (Ok_l,eh_k>

form <570k_2,€h_k>. It follows that Cf’h = <(5,B§le)> and Bﬁh = [leh]o =

((0.Br7%1))-

. Suppose that h = k =2 2 and ¢ = 1. We argue that the following recurrence

holds: . .
Cf,h = [Cf—l,h] ’<(€,BEZ£1)>’[C£M] .

First, we show that every leaf in Ct]fh is also a leaf in tree ((5, Bf;ﬁl» or in

, and Ct]f n has exactly one leaf, which is of the

b
tree [Cﬁ—l,h] for some b € {0,1}. Suppose that £ = (8,_1,...,51) is a leaf

n Ct,h'

o If 3,1 = ¢ then (By_9,...,531) is a leaf in Bﬁﬁil, and hence the node
0= {e,Bp-2,...,01) is a leaf in tree ((5,85211».

o If B4_y = b for some b € {0,1} then (3, By_g,...,B1) is a leaf in Cf_y 5,
and hence £ = (b3, By_a,...,51) is a leaf in [Cf_l’h]b.

Conversely, we now argue that if £ = (8,_1,...,31) is a leaf in labelled ordered
tree <(5, Bﬁ ;11», then it is also a leaf in C,ﬁ n- Note that the premise implies
that B,_; = € and (fj,_2,..., 1) is a leaf in Bﬁ;il, and hence, by item (3| in
Proposition we have that £ = (g, B,_a,..., 1) is indeed a leaf in Cf,h.

b
Finally, we argue that if £ = (8,_1,...,51) is a leaf in a tree [Cf_Lh] for
b € {0,1}, then it is also a leaf in Cﬁ n. Indeed, the premise implies that

Bn = b3 and (B, By_g, - .., f1) isaleafin Cy_y ,, and hence £ = (bf, By_a, .- ., B1)
is indeed a leaf in Cyy,.

0
. Suppose that h = k =2 and t = 1. We argue that then we have Bﬁh = [Cf,h] .

First, let £ = (8,_1,...,01) be a leaf in tree Bf,h. Since h = k, all bit strings
Bh-1, - -, B1 are non-empty, and hence 8,1 = 08 for some 3 € W. By item [I}
of Proposition it follows that the sequence (3, B4_a,...,531) is a leaf
in Cf,h, and hence ¢ = (08, B,—2, ..., (1) is indeed a leaf in [Cih]o.
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0
Conversely, let £ = (B,_1,...,51) be a leaf in tree [c{fh] . Then B,_; = 03
for some 8 € W and sequence (3, By_a,...,31) is a leaf in Ctlfh. By item [1| of
Proposition it follows that ¢ = (03, By_a, ..., 31) is indeed a leaf in Bﬁh.

6. Suppose that h > k = 2 and ¢t = 1. We argue that then the following recurrence

holds: . )
Bin = [Cin] - ((e:Brn-r)) - [Cin] -

First, we show that every leaf in Bf’ p is also a leaf in tree <(€, Bﬁ h_1)> or in tree

k 1b _ . ok
[Ct,h] for some b € {0,1}. Suppose that £ = (f8j,_1,..., 1) is a leaf in By,

o If 3,1 = ¢ then (By_a,...,531) is a leaf in Bﬁh_l, and hence the node
0= (e, Pp_a,...,B1) is a leaf in <(€,Bf’h_1)>.

o If 8,_1 = bp for some b € {0,1} then, by item [2l of Proposition
(B, Br_a,...,P1) s aleaf in Ctkjh, and hence ¢ = (b3, By_2,..., 1) is a leaf

. k b

m I:Ct,h] .
Conversely, we now argue that if £ = (B,-1,...,31) is a leaf in labelled or-
dered tree <(6, Bﬁh_l», then it is also a leaf in Bﬁh. Note that the premise

implies that 8,_1 = ¢ and (By_a,...,31) is a leaf in Bf,h—y It follows that
0= (e, Bh,..., ) is indeed a leaf in By),.

Finally, we argue that if ¢ = (B,_1,...,81) is a leaf in [Cf’h]b for some
b € {0,1}, then it is also a leaf in Bﬁh. The premise implies that 3,_1 = b3
for some 3 € W and that (3,...,5;) is a leaf in Ct]fh. By item [2, of Proposi-
tion it follows that £ = (b3, By_s, ..., 1) is indeed a leaf in By,

Straightforward structural induction (on the structure of labelled ordered
trees Z/It’fh and foh) yields that Bﬁh = Z/It’fh and Cf,h = Vf:h. O

5.3 Efficiently navigating labelled Strahler-universal trees

The computation of the level-p successor of a leaf in a labelled ordered tree of
height & is the following problem: given a leaf (8},, B,_1, - - ., 31) in the tree and given
a number p, such that 1 < p < h, compute the <. -smallest leaf <ﬁ;b, B;l_l, e ,ﬁ'1>
in the tree, such that (Bh, e ,Bp> <lex (5;1, .. .,[3;,). As (implicitly) explained by
Jurdzinski and Lazié¢ [JL17, Proof of Theorem 7], the level-p successor computation
is the key primitive used extensively in an implementation of a progress measure

lifting algorithm.

70



Lemma 5.3.1. Every leaf in tree Bﬁh can be represented using O((k + t)logh)
bits and for every p = 1,2,... h, the level-p successor of a leaf in tree Bﬁh can be
computed in time O((k +t)logh).

Proof. Consider the following representation of a leaf (3j,_1,...,/51) in Bﬁ e for
each of the at most k& + ¢ bits used in the bit strings 8;_1,...,51 overall, store
the value of the bit itself and the number, written in binary, of the component
in the h-tuple that this bit belongs to. Altogether, the number of bits needed is
O((k+t)-(1+1gh)) = O((k +t)logh).

We now consider computing the level-p successor of a leaf £ = (8,_1,...,51)
in tree Bﬁ n- We split the task of computing the level-p successor " of leaf ¢ into the

following two steps:

e find the lowest ancestor (ﬁh_l, e ,Bq> of (Bh_l, e ,ﬁp> (that is, smallest ¢
satisfying ¢ = p) that has the next sibling <ﬁh_1, ooy Bgrts BZZ) in Bf,hé

e find the smallest leaf ¢' = (ﬁh_l, ooy Byt ﬂ,'], ﬁ;_l, ey Bi) that is a descendant
.ok
of node (By_1,... Bye1. By) in By,
For node ¢, = (B-1,...,3,), where ¢ < r < h— 1, we can determine whether

it has the next sibling E!r = (Bh_l, ooy Brats BL) in Bf’;h and find it, by considering

the following cases. Firstly, we identify the cases in which ¢, does not have the next

sibling:
e the number of non-empty strings among By,_1, ..., Brs1 is k — 1;
e the number of non-leading bits used in strings By_1, ..., Brs1 is ;

o 5. = 01’ for some j = 0, the number of non-leading bits used in strings 5;,_1,

.., By is t, and all bit strings 3, ..., £ are non-empty;

o f3, = 1’ for some j = 1, and the number of non-leading bits used in strings

Bh-1, -+, Bris t.

Define k,,1 to be equal to k — 1 minus the number of non-empty bit strings among
Bh-1, ---, Br+1, and define t,.,; to be equal to ¢ minus the number of non-leading
bits used in strings By_1, ..., Br+1. We note that the subtree of B,ﬁh that is rooted
at node ¢, is a copy of tree 5:11,7" +1- Recall that trees Bﬁ n, satisfy the same
recurrences as trees Z/{t]f n- Observe that the four cases above capture £, being the
largest child of the root of the copy of Bf:llﬂn +1 rooted in node 4,.;1 in Bﬁ n, that
correspond to items [2], 3], [Bl, and [} of Definition respectively.

Secondly, we consider the remaining two cases in which ¢, does have the next

sibling and we show how to find it by setting the value of B; accordingly.
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o If less than ¢ non-leading bits are used in strings 8,_1, ..., B, then set B,'ﬂ =

Brl()j for some j = 0, so that exactly ¢t non-leading bits are used in strings

I
Bh—h ) 57’+17 /67"

o If exactly t non-leading bits are used in strings B,-1, ..., 5, and 3, = ﬁOlj
for some € W and j = 0, then set ﬁL = 0.

Finally, we set (= <ﬁh_1, ooy Byt B;, OOi, 0,...,0,¢,... ,5) for some suitable
i 2 0, so as to make the number of non-empty bit strings in / equal to k — 1, and
the number of bits used in all the bit strings in ¢ equal to (k—1) +t.

To argue that the above case analyses can be implemented to work in time
O((k +t)log h), while using the succinct representation described above, is tedious

and hence we eschew it. O

5.4 Lower bound for Strahler-universal trees

k_
Theorem 5.4.1. The size of a k-Strahler (n, h)-universal tree is Q(n lgn (%) 1).

Proof. We show that there exists a lower bound on the size of a k-Strahler (n,h)-

universal tree, denoted by f(n, h, k), such that:

hk>nlgn h nlgn( h kol
Flnhk) 2 5oael k— 1] > 2048 \ 5=

More precisely, we show that:

f(n,h,k)Bmax(%(klzl),(kﬁl)) (5.4)

This proof closely follows the proof of Czerwiniski et al’s [CDE 19| lower bound.
First, define f(n, h, k) in the following cases:

o f(1,h,k) =1, for all h, k,
e f(n,h,1) =1, for all n, h, and
o f(n,1,k) =nforalln and k = 2

Clearly, f(n,h,k) is a lower bound on the size of a k-Strahler (n, h)-universal tree
and satisfies Equation [5.4

We will show that one can define by induction f(n,h, k) as a lower bound
on the size of a k-Strahler (n, h)-universal tree satisfying Equation for k <lgn
and k < h.
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Then, by defining f(n, h, k) as follows in the remaining cases, we can conclude

the proof:
e f(n,h,k) = f(n,h,lgn)if k> lgn,
e f(n,h,k)=f(n,h,h)if k > h,

We now define f(n,h, k) by induction, under the assumption that k& < lgn
and k < h. For a k-Strahler (n,h)-universal tree T, we claim that the number of

nodes at depth h — 1 with degree = § is at least
e f(n,h—1,k)if 6 =1 and
o f(In/d]l,h=1,k=1) for § > 1.

Suppose § = 1, the bound is obvious. For § > 1, consider any k-Strahler
(n, h)-universal tree U. Let Us be the tree obtained by deleting all nodes that do
not have degree at least 5. Consider any tree Ts with at most |n/d ] many nodes,
height at most h and Strahler number at most £ — 1. We will show that this tree Ty
must embed into Uy, showing that Uy is (k — 1)-Strahler (|n/d], h — 1)-universal. In
Ts, add § many children to each of the |n/d] leaves. This results in a tree that has
Strahler number at most k& and at most n children and must then embed into Uy.

Since the number of vertices at depth h — 1 with degree 0 is as argued, we
can conclude that there exists a lower bound f(n,h, k) on the size of a k-Strahler

(n, h)-universal tree such that:
Fnh k) = f(n,h=1,k)+ Y f(In/o],h—1,k=1). (5.5)
5=2

By induction, we get:

Fnh k) > ’;é;ig(z - }) + ﬁ;wm le Ln/éJ(Z I ;).

This gives:

n

f(n,h,k) = 7;(1)%(2 1) 2048( )Z n/d|1lg|n/é].

6=2

Case 1. We will show that for n > 2% and h,k>1,

n

Z n/é]lg|n/d] = nlgn. (5.6)
5=2
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Let p = |lgn], then

n D 210 2p

Z n/d]lg|n/d] = 221 ({ Jlg{ ZJ)

6=2 i=1 2

p P .
Nop—1 _ op+l b—1

Z( —2 =2

i=1 =1

Since 2" 2 n and Y7, 2 = 222 5 1g 0y for all p > 8, (5.6) holds for all
8
n>2.

By || and Pascal’s identity, we finally get for all n > 28,

nlgn| h h nlgn( h
f(n,h,k) = m(k _ 1) = max((k _ 1), M(k‘ _ 1))

Case 2. It remains to handle the case n < 2°. For 2 < n < 2° observe that

h >nlgn h
k—=1)7 2048 (k-1

It is then enough to prove by induction that

Fnoho k) = (kfl)

We get the following sequence of inequalities - the first is from equation (5.5),

the second is by induction hypothesis and the last one from Pascal’s identity:

Fhk) = f(n,h =1, k) + Y f(In/d],h=1,k=1)
0=2

(12)(123) - (1)

5.5 Strahler-universal progress measure lifting algorithm

Jurdzinski and Lazié¢ [JL1T, Section IV] have implicitly suggested that the progress-

measure lifting algorithm [Jur00] can be run on any ordered tree and they have

established the correctness of such an algorithm if their [Jurdzinski-Lazi¢ universall
were used. This has been further clarified by Czerwinski et al. [CDF"19,

Section 2.3], who have explicitly argued that any (n,d/2)-universal ordered tree

is sufficient to solve an (n,d)-small parity game in this way. We make explicit a
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more detailed observation that follows using the same standard arguments (see, for

example, Jurdzinski and Lazi¢ [JL17, Theorem 5]).

Proposition 5.5.1. Suppose the progress measure-lifting algorithm is run on a par-
ity game G and on an ordered tree T'. Let D be the largest Steven dominion in G on
which there is a Steven progress measure whose tree can be embedded in T'. Then

the algorithm returns a Steven dominion strateqy on D.

An elementary corollary of this observation is that if the progress-measure
lifting algorithm is run on the tree of a progress measure on some Steven dominion in
a parity game, then the algorithm produces a Steven dominion strategy on a superset
of that dominion. Note that this is achieved in polynomial time because the tree of
a progress measure on an (n, d)-small parity game is (n, d/2)-small and the running
time of the algorithm is dominated by the size of the tree [JL17, Section IV.B].

Theorem C. There is an algorithm for solving parity games with n vertices, d
priorities, and of Strahler number k in quasi-linear space and time nfW. (d/2k‘)k =
nklg(d/k)/lgmo(l), which is polynomial in n if k -1g(d/k) = O(logn).

Proof. By Proposition we may assume that £k < 1 +1gn. In order to solve
an (n, d)-small parity game of Steven Strahler number k, run the progress-measure
lifting algorithm for Steven on tree B{iljg,-izj,d/%l? which is (k+1)-Strahler (n,d/2+1)-
universal by Lemma and Corollary By Theorem [4.3.2] and by Proposi-
tion the algorithm will then return a Steven dominion strategy on the largest
Steven dominion. The running time and space upper bounds follow from Theo-
rem by the standard analysis of progress-measure lifting as in [JL17, Theo-
rem 7], and by Lemma [5.3.1] O

5.6 Remarks

We highlight the k-1g(d/k) = O(logn) criterion from Theorem |C|as offering a novel
trade-off between two natural structural complexity parameters of parity games
(number of priorities d and the Strahler/Lehtinen number k) that enables solving
them in time that is polynomial in the number of vertices n. It includes as special
cases both the d < lgn criterion mentioned by Calude et al. [CJK+ 22, Theorem 16]
and the d = O(logn) criterion of Jurdzinski and Lazi¢ [JL17, Theorem 7] (set

k =|lgn|+ 1 and use Propositions and to justify it), and the k = O(1)
criterion of Lehtinen and Boker [LB20, Theorem 4.2] (by Theorem [B).
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We argue that the new k - lg(d/k) = O(logn) criterion (Theorem en-
abled by our results (coincidence of the Strahler and the Lehtinen numbers: Theo-
rem|B)) and techniques (small and efficiently navigable Strahler-universal trees: The-
orem Corollary and Lemma considerably expands the asymp-
totic ranges of the natural structural complexity parameters in which parity games
can be solved in polynomial time. We illustrate it by considering the scenario in
which the rates of growth of both k£ and lgd as functions of n are (’)(\/@), ie., d
is 20(‘/@). Note that the number of priorities d in this scenario is allowed to grow
as fast as 2"VE"
than what is allowed by the d = O(logn) criterion of Jurdziiski and Lazié [JL1T,

Theorem 7]. Indeed, its rate of growth is much larger than any poly-logarithmic
- 2c-lg lgn’

for an arbitrary positive constant b, which is significantly larger

function of n, because for every positive constant ¢, we have (Ign)® and
c-lglgn is exponentially smaller than b-4/lgn. At the same time, the (’)(\/log n) rate
of growth allowed in this scenario for the Strahler number k substantially exceeds

k = O(1) required by Lehtinen [Leh18| Theorem 3.6].
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Chapter 6

Strategy iteration algorithm

with decompositions

Strategy improvement algorithms are a class of algorithms to solve Markov decision
processes as well as parity, mean-payoff, discounted payoff and stochastic games.
This approach was motivated by Howard’s [How60] policy iteration algorithm, which
is commonly used to determine the values of a Markov decision process. Hoffman
and Karp [HKG66| pioneered the development of strategy improvement algorithms for
two-player games and addressed stochastic games. These algorithms trickled down
the hierarchy of games from turn-based stochastic games [Con92] to discounted and
mean-payoff games [GKKSS8| [Pur95, [ZP96], to parity games [VJ00].

Strategy improvement algorithms for positionally determined games fix a
valuation for every Steven strategy, usually based on an optimal counter-strategy
of Audrey. Starting from a positional strategy of Steven, until an optimal strategy
is found, the strategy is improved with respect to this valuation by switching some
edges of the strategy for Steven. Ideally, computing this improved strategy and
verification of its optimality can be done efficiently. The proceedure that dictates
which edges are chosen is called the switching policy.

Variations of strategy improvement algorithms have been explored for par-
ity games, resulting in both theoretical and practical studies [VJ0O, Lut08, [Sch08,
Feal, [FS18]. Despite the popular notion that the number of strategy improvements
required is generally small in practice, these algorithms can have exponential worst-
case complexity. Exponential families of examples for common pivoting rules for
both games [Fri09] and for MDPs [Feal(] emerged decades after the introduction of
strategy improvement algorithms, revealing that strategy improvement algorithms

do not always guarantee polynomial termination as initially believed. Apart from
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deterministic switching conditions, subexponential lower bounds were established
even for randomised pivoting rules [FHZ11].

The quasi-polynomial breakthrough for parity games inspired further study
of this classical algorithm. Ohlmann, in his PhD thesis [OhI21], outlined an impos-
sibility result that ruled out quasi-polynomial algorithms for a particular framework
of strategy improvement algorithms. This framework required that the valuation
was based on the current strategy and an optimal positional counter strategy. How-
ever, the work of Koh and Loho [KL22| circumvented this impossibility result by
considering a hybrid algorithm of value iteration and strategy improvement (called
strategy iteration algorithms here) where the valuation depended on both an Audrey
strategy and also on a progress measure.

In the strategy iteration algorithm of Koh and Loho for parity games, an
arbitrary (positional) strategy is chosen for one player, say Audrey. The valuation
at each step is a progress measure of the game obtained by restricting Audrey to
the chosen strategy edges. When a new strategy is chosen for the next iteration, a
new valuation is computed based on the progress measure of the previous iteration
and the new strategy. This valuation is obtained by finding the smallest progress
measure larger than the one previously computed on the game restricted to the new
strategy. The technically challenging part of their algorithm is to find this smallest
progress measure once a new strategy is identified. Koh and Loho provide a way

to find such a progress measure for a new strategy in time (’)(mn2 lognlogd) if the

underlying tree is the |Jurdziﬁski—Lazié universal tree| [JL17], O(mn’log® nlogd) if
the underlying tree is the [Strahler universal trees| [DJT20], and O(d(m+nlogn)) for

complete trees [Jur00]. Combined with the bounds on the sizes of the tree, this gives

them a quasi-polynomial strategy iteration algorithm for [Jurdzinski-Lazi¢ universall

and Strahler universal trees, and a new exponential strategy improvement
algorithm.

Our primary contribution is a strategy iteration algorithm that improves on
Koh and Loho’s work in the following way. We produce a universal strategy it-
eration algorithm, whose underlying tree can be any tree, and not just the trees
mentioned above. In order to achieve such an algorithm, we define new objects
called decompositions, which can be seen as a relaxation of attractor decomposi-
tions [DJLI8, [DJL19], endowed with a partial order among them. Our algorithm
works by iteratively improving an underlying valuation. However this valuation is
based on the strategy, as well as on the decompositions maintained after each im-
provement of the strategy. Secondly, we show that using decompositions instead

of progress measures simplifies the algorithm of Koh and Loho. Indeed, Koh and
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Loho’s quasi-polynomial algorithms relied on the regularity obtained from recursive
definitions of the universal trees, whereas we are able to remove such requirements
and modify their algorithm to work for parity games with arbitrary trees of attractor

decompositions. Thirdly, we show that each strategy improvement step can be done

in time O(mdlogn). Especially in the case where the trees are [Jurdzinski-Lazid|
or the [Strahler universal trees| we improve the runtime of one iter-

ation of the strategy iteration algorithm to closely match Koh and Loho’s runtime

for complete trees.

6.1 Attractor decompositions versus decompositions

Attractor decompositions are structural witnesses that shed light on the underlying
structure of the game. Although obtained naturally as a byproduct of the classical
recursive symmetric attractor computation algorithm of McNaughton[McN93] and
Zielonka [Zie98|, utilising attractor decompositions in other quasi-polynomial ver-
sions of recursive attactor based algorithms—or even constructing them as a part
of the output like the ones in Lehtinen et al. [LPSW22] or the universal algorithm
of Jurdziniski and Morvan [JMT22]—is not straightforward. This is because these
attractor decompositions, by virtue of being witnesses of winning in a parity game,
are quite binary: a subgame either has an attractor decomposition, or it doesn’t.

We introduce the concept of decompositions, a relaxation of attractor decom-
positions, and use it as an ingredient in building a valuation. Since a valuation needs
to determine “how good” a strategy is, it requires an underlying order. These de-
compositions are defined with respect to a fixed tree and, using the order of the fixed
tree, we define an order on the set of all valuations. Observe that this definition de-
viates slightly from our earlier definition of an attractor decomposition, where they
were defined as hierarchical decompositions of winning sets for parity games. The
attractor decompositions thus defined had ordered trees that correspond to them.
In order to facilitate our definition of a decomposition, we first introduce a slightly
altered, but conceptually equivalent, definition of an attractor decomposition, which
is defined with respect to a fixed ordered tree.

Since the attractor decompositions used in the following section for Steven
and Audrey are defined with respect to a tree, we wish to reason about these trees

slightly differently for each player.

Even and odd levels of trees. We fix a tree 7 which is equitable, that is, every

leaf has the same “depth”. For such a tree T, we say that the even level of a leaf
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of this tree is 2. For nodes of the tree T that are not the leaf, its even level is
exactly two more than the level of any of its children. The odd level of a tree T is
defined similarly, except that the odd level of the leaf is instead 1. Note that the
height of a tree is at most half of the even or the odd level. For a node 5 in the
tree T, we use Even-level (n) and Odd-level () to denote the even and odd levels
of 1 in the tree, respectively. The even level of a tree is the even level of its root.

For example, consider the labelled tree com-

T prising exactly of the nodes {(),(1),(2),(1,1),

. 6 (2,1),(2,2)}. This tree is illustrated in Fig. [6.1

where each node is represented by € and its vari-

# o A ants. The node (2,2), written as ey has even

level 2 and odd level 1 since it is a leaf, whereas

the node (), written as €, has even level 6 and

f1 ex €22 2 odd level 5. For a node, we usually use the same
Figure 6.1: An ordered tree variable, but with increasing subscripts from N

to list their children in increasing order; for ex-
ample, we use 1), ..., n; to denote the first k£ children of 1 in that order.
In this chapter, we write G to represent the subgame obtained by only

considering the vertices of priority at most p in a parity game G.

Attractor decomposition with respect to a tree 7. We alter our previous
definition of an attractor decomposition. Our modified definition is more fundamen-
tally associated with a pre-determined tree, instead of our earlier definition, where
we had to extract the tree out of the recursive definition of the attractor decompo-
sition. Hence, for a fixed tree, we define it as a partition of the set of vertices of the
game such that there are three distinct parts of the partition corresponding to each
node of the tree.

For a node 7 in a tree 7, we say that Steven has an (), T )-attractor decom-
position of a parity game G, if the vertices of the game G can be partitioned into
three times as many parts as there are descendants of the node 7, with three parts
corresponding to each of the nodes. We further require that these partitions satisfy
some properties about traps and attractors.

More rigorously, consider an (n, d+1)-small parity game G where Steven wins
from all vertices. Let n be a node in a tree 7, where Even-level (n) < d, and with ¢

children 7y, ...,n,. We say that

A = <H17,Tn7(“417"'7“4€)75n>
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is a Steven (7, T )-attractor decomposition of G if
1. the vertex set V is partitioned into £ + 3 subsets by H",T", 8", Ry, ..., Ry;

2. the set V'\ S”, henceforth written as [.An], is a trap for Steven in the game G

and it contains vertices of priority at most d;
3. H" consists of all vertices in [An] that have priority exactly Even-level () ;

4. there is a Steven-reachability strategy from all vertices of T" to the set H" in
the subgame induced by [A"];

5. there is a Steven-reachability strategy from all vertices of S” to the set of
vertices [An] in G;

and setting G; = G\ (H"UT"), for i = 1...¢, we have:
6. R; is a trap for Steven in G;;
7. A; is an (n;, T )-attractor decomposition for the subgame induced by R;;
8. Gir1 =G\ Ry;

and Gy = 5.

For any node y that is a descendent of 7, we write Hzl, Tj‘ or SZl to denote the
sets H”, T”7 or S” respectively in an (1, T )-decomposition A of G. The subscript is
only adopted in situations where we refer to more than one attractor decomposition

and we drop the subscript if A is clear from context.

Remark 3. For a tree T and a node n in it with even level d, a Steven (n,T)-

decomposition of an (n,d + 1)-small parity game G always is such that
° HZ‘ only contains vertices of priority exactly d,
° Tj\ only contains vertices of priority at most d — 1, and
° Szl only contains vertices of priority at most d + 1.

An Audrey (n, T)-decomposition is defined analogously. We sometimes write

T-decomposition instead of (n, T )-decomposition when 7 is the root of 7.

Example 2. Consider the game G illustrated in Fig. . Steven wins from all
vertices in this game. We show a T -attractor decomposition in Fig. of the
game G, where the tree T is the N-labelled tree illustrated in Fig.[6.1]. In a Steven
(e, T)-attractor decomposition, the sets H*, T, Ry, Ry, S as in the definition of an
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Figure 6.2: A parity game and its attractor decomposition

attractor decomposition are as follows. The parts H°, T, and S° are empty. The
set Ry contains all the parts to the left of and including the part S°. The set Ro
contains all other parts strictly to the right of and not including S. A reader is

encouraged to verify Remark[3 on this example.

The set S is used to denote attractor sets represented on the “Side” of the
game, and 7" is used to denote the attractor sets that are attracted to “Top” of
the game where the “Highest priority” set H® is placed. We also often refer to the
sets as top-attractor set or side-attractor set of a node v for the sets 77 and S”

respectively.

Proposition 6.1.1 ([McN93| Zie98]). In an (n,d)-small parity game G, Steven wins
from all vertices if and only if there is a Steven (n, T )-attractor decomposition for

some node 1 in an ordered tree T where the even level of n is at most d + 1.

Steven attractor decomposition when Audrey has no choice. Finding at-
tractor decompositions of a parity game is at least as hard as identifying a winner
of a parity game, as atrractor decompositions are a witness of winning. If we re-
strict ourselves to the case where Audrey has no choice (all her vertices have at
most one out-going edge), solving such games can be done in near-linear time. This
is not surprising, as the problem of finding if Steven can win reduces to finding
an even cycle in the underlying graph. One can do this in time O(md) by using
Tarjan’s SCC [Tar72] decomposition algorithm on the graph restricted to vertices
of priority at most p, for each even p, to identify such cycles. King, Kupferman,
and Vardi [KKVO0I] improved the complexity by providing an O(mlogd) time al-
gorithm for checking non-emptiness of a parity automaton by identifying the states
of an automaton, from which some even-cycle can be reached. Finding the winner
in a parity game where a player has no choice reduces to the problem of checking

non-emptiness of a parity automaton.
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In such games where Audrey has no choice, Steven has a “simple” attractor
decomposition. By simple, we mean that Audrey has an Z-decomposition where Z is
the tree with exactly one leaf and the even level of its root is as large as the highest

even priority in the game G.

Proposition 6.1.2.  For an (n,d)-small parity game, where the root of the tree
with one leaf T has even level d, there is a Steven I-attractor decomposition of G, if

Audrey has no choice in G.

Proof. We assume that we have a parity game where an even cycle is reachable
by any vertex. If not, one could apply the algorithm of King, Kupferman, and
Vardi [KKV01] to remove vertices that cannot reach an even cycle. Let the root of
7 be i and the only child of 1 be 7;.

We define the (1, Z)-decomposition A" defined as follows:

e The set S is the set of vertices in G from which all paths lead to a vertex of

priority d + 1.

e The set H is the set of vertices of priority d from which there is an infinite

path that does not visit a vertex of priority d + 1.

e The set T is the set of vertices of priority at most d — 1 and from which there
is a path to H in gsd.

e The set W is the set of vertices in G that are not in S, H, or T.

e Recursively, we find the (7, Z)-attractor decomposition A' for the subset of
vertices W in the rest of the game ng_l, where the node 7, is a child of the
node 7.

e Declare A = <H, T, (A') ,S) as the (n, Z)-attractor decomposition. O

Suppose we fix a strategy for Audrey, then it is easy according to Propo-
sition above to find an attractor decomposition. But what happens to this
attractor decomposition when a different strategy of Audrey is chosen? To under-
stand this further, we introduce our central object of this chapter: a decomposition.
It is a relaxation of the above definition of a Steven (7, T )-attractor decomposition

of a parity game.

Decomposition. A Steven (1, T )-decomposition D" of the vertices V of a parity

game G, where children of n are denoted by 7, ..., n, is defined recursively as
D" =(H",T",(D",...,D"™),5")
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Figure 6.3: Two decomposition of the parity game in Fig. neither of them is
an attractor decomposition

such that

o the sets H",T", 8" Ry,..., and R}, partition V.

e H" consists exactly all vertices of priority equal to Even-level (1) in set V'\ S”,
written as [Dn] henceforth.

o 57 is a superset of all vertices in V of priority Even-level () + 1 in V.

e For each child ny,m9,...,n; of nin T, D" is an (n;, T )-decomposition of R;.

Observe that although there is no condition on the set 7" in the above definition,
it only contains vertices of priority at most Even-level (()n) — 1. Given an (n,7T)
decomposition, we refer to all the vertices of G using [D"]. In the above, [D"] = V
and [D"] = R;. Similar to attractor decompositions, when 7 is the root of T, we
just refer to it as T-decomposition of a game. The Audrey (7, T )-decomposition of
a game is defined analogously. We sometimes refer to a set of the form T for a
node « as the top-set of 7y, as it is derived from the top attractor set, and similarly

we say side-set to refer to sets of the form S”.

Example 3. Consider the two different decompositions given in Fig. of the game
G in Fig. . These decompositions are non-examples of attractor decomposition.
Neither decomposition here is an attractor decomposition. The decomposition D in
Fig. is mot an attractor decomposition because the set of vertices [D?] does
not form a trap for Steven in the game. The set [D'] consisting of the shaded
vertices of priority 4 and the non-shaded vertices of priority 2 does not form a trap
for Steven as Steven can escape to Hg. The decomposition & in Fig. is not an
attractor decomposition because Te contains the vertex of priority 5 and this vertex

is not in the Steven attractor to Hyg.
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6.2 Valuation using leafy trees

Our goal of introducing the concept of decompositions was to construct a valuation
using it. To achieve this goal, we need these decompositions to have a (partial)
ordering between them. In this regard we first define a modification of a given tree T,
called the leafy tree of 7. The nodes of these leafy trees also have a total order.
We argue that a T-decomposition uniquely defines a specific map from vertices into
leafy tree of 7. Further, this map defines a partial order between decompositions

which is inherited from the order on leafy trees.

Leafy trees. We define the leafy tree of a (labelled) tree 7 as the tree, which in
addition to all nodes in the tree 7, contains two new children ns and 17T for each
node 7 in the tree 7 and a unique distinct element T. These newly introduced
nodes 775 and 77T are declared to be the smallest and the largest of the children of
each node n and T treated as the last child of the root of 7. More formally, we say
L (T) is the leafy tree of T where

c(T) = J {nn’n"u{T}.

neT

The order of elements in £ (7) is inherited from the tree order on 7. The underlying
tree order induces a total order on the set of all nodes of £ (7) with T as the largest
element.

Observe that unlike the trees we had considered so far, leafy trees are not
always equitable. Nonetheless, we extend some definition to leafy trees £(7) of
an equitable tree 7. We say even (resp. odd) level of 77S to be one more than
the even (odd) level of 1 and the even (odd) level of n" to be one less. The even
(resp. odd) level of T is one more than that of the even (odd) level of the root.
Fig. illustrates the leafy tree of a tree with three leaves, which can be seen as
an N-labelled tree whose nodes are {(),(1),(2),(1,1),(2,1),(2,2)}.

For an element x of £(7) and p, a number that is at most the even level of
the tree, we define next (z, p) to be the smallest element in £(7") that is larger than
2 which has even level exactly p. For an element x in £(7) and an even value p, we
define x|, (similar to Chapter 4)) to be the ancestor of z at level p. If the current

node z has a level larger than p, then we define it to be x.

A strategy respecting decomposition. Recall that a strategy of Audrey in a
game G is a set of some edges outgoing from Audrey’ vertices and all edges outgoing

from Steven’s vertices. We define the restriction of a game G to a positional strategy
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p as the same game instead on the arena (V, p) where V is the set of vertices of G.
We write G|, to denote this game G restricted to a strategy p. Consider a Steven
(n, T)-decomposition D of a parity game G and let p be a positional Audrey strategy
in G. We say that this decomposition D is a p-respecting decomposition of the game

G, if it is a Steven (n, T )-attractor decomposition of the (restricted) game G|,.

A valuation of a strategy and decomposition pair. Consider a Steven (7, T)-
decomposition D that is p-respecting, and node v of the tree T, which is a descendant
of node 7. For each vertex v € H% U S% U T, we determine two values: the first
is a node in the leafy tree and the second is a natural number. In cases where
v E H%, the second component is automatically declared to be 0. Otherwise, the
second component corresponds to the the length of the shortest path in G, from v
to outside the set S% or T g that visits the set [Dn] or H", respectively (if there is
no such path, then we declare this length as 1). The first component is -, 'ys, or
’yT, depending on weather v belongs to H%, S% or T, respectively.

For an Audrey strategy p and a Steven 7-decomposition D of an (n, d)-small
parity game G that is p-respecting, we define the valuation of val (D, p) to be a map
from V to the set M(T) that we define. This set M(7T") consists of tuples where the
first element of the tuple is from £ (7) and the second element is a natural number
that is at most n — 1. In other words, we would have for each 7 € T, elements of
the form (n,0), (nT,z'), and (ns,i), for all 7 element of {1,...,n — 1}. We make an
exception for the element T in the leafy tree £(7), where this is instead considered

as a unique element in M(7) as well. This space of valuations M(T) is defined as

M) ={Tyu [ J{@moro {0 "} x {1 on—1}

neT neT
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Figure 6.5: Two decomposition of the parity game G in Fig. with its strategy
edges highlighted

We define the valuation val (D, p) (v) as
e (n,0)ifve H"

° (nT,z’) if v € T" where i is the length of the shortest path in G|, from v to
the set H":

. (nS, z) if v € S" where i is the length of the shortest path in G|, from v to the
set [Dn];

e T, for any v not in the set [D].

The valuation val (D, p) is defined only when D is a p-respecting decomposition.

An ordering of the valuations. The ordering < defined on £ (7) is also used to
denote the ordering we had defined on M(T). For two elements 7, 17S, the elements
(n,0) < (ns,3) in M(T) since n < nS and (ns,3) < (ns,5), since 3 < 5.

This further naturally defines an ordering E for the set of all valuations by
extending the =< ordering on M(T) further to the point-wise ordering over functions
from V to M(T).

For two strategies p and o of Audrey and for two Steven T-decompositions
D and £ of a game G such that D is p-respecting and £ is o-respecting, we can
compare the decomposition-strategy pair D and p with the pair £ and o by compar-
ing val (D, p) and val (£,0). Moreover, we say val (D, p) & val (€,0) if val (D, p) E
val (£,0) and val (D, p) (v) # val (€,0) (v) for at least some v.

Example 4. Consider the attractor decomposition A in Fig.|6.5(a) and the decom-
position D in Fig. . Let the Audrey strategy p be the one which contains the

edges between

e the shaded priority 2 Audrey vertex and the priority 3 Steven verter,
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e the unshaded priority 2 Audrey vertex and the adjacent priority 2 vertex,
o the unshaded priority 4 Audrey vertex and the priority 5 Steven vertex, and
o the shaded priority 4 Audrey vertex and the shaded priority 4 Steven vertex

along with all of Steven’s outgoing edges. The edges that are not in the strategy are
dotted.

We then have val (D, p) E val (A, p), since the decomposition on all but the
unshaded vertices of priority 2 are the same. For vertices of priority 2, the valuation
of D and p at these vertices are (e11,0), whereas the valuation of A and p at these

vertices are (ea1,0) for both, which is larger.

In a scenario where val (D, p) & val (€,0), we say that the valuation of the
strategy and decomposition pair val (£, 0) is strictly improving from val (D, p). We
argue that for a fixed strategy o, there is a minimum decomposition £ such that the
valuation val (£, o) is strictly improving from the valuation val (D, p). The lemma
below shows that such a minimum decomposition exists. If the strategy o is clear
from context, we also just say the decomposition £ is strictly improving, rather than

the valuation val (€, ).

Lemma 6.2.1. Given two (n, T )-decompositions D and E of an (n,d)-small parity
game such that both are o-respecting decompositions for a Steven strategy o, there

is a o-respecting decomposition F such that val (F,o) = min{val (D, o) ,val (£,0)}.

Proof. Consider the function f defined from the vertex set V to M(T) as f(v) =
min{val (D, o) (v),val (£,0) (v)}, for each vertex v. Now, we define F to be the de-
composition such that Hyr = {v | f(v) = (7,0)}, T = {v | f(v) = (WT,Z') for some
i} and S; = {v | f(v) = (’ys, z) for some z} We show that F is a o-respecting de-
composition and also that val (F,o) = f = min{val (D, o) ,val (€,0)}.

We show using an induction on the number of nodes in the tree. Our induc-
tion hypothesis is that for all v, if f(v) = min{val (D, o) (v),val (&€,0) (v)} = (n,0),
then F so constructed is an (7,7 )-decomposition. The base case is established
by the simple observation that the induction hypothesis is true if 7 is the leaf of
the tree 7. To show that F satisfies the conditions of an attractor decomposition
on restricting G to 0. We list the properties as in the definition of an attractor

decomposition (in order) and show that they are satisfied.

1. The corresponding sets form a partition follows from the fact that f is a map

into the leafy tree.

89



2. [.7-"77] is a trap for Steven. Indeed, due to our assumption, for all vertices v,
f(v) = (n,0). Therefore, since [F"] since it contains [D"] U [€"], [F"] is
exactly [D"] U [E"] . The union of two traps for Steven is still a trap for him.
H;’r consists of vertices of priority equal to the even level of 1. Moreover, note
that all vertices v in Hg or Hg consists of the minimal elements for val (D, o)

and val (€, o) respectively.

3. H;’r only consists of vertices of priority at most d since both Hg and Hg only

contains vertices of priority at most d.

4. There is a path from Tg and Tg , which visits H} = Hg U Hg T]nE consists of
(T g uT, gn) \ HZ- Therefore, there is a Steven-reachability strategy from T;_-.

This means that there is a path from each vertex in T]nf, which visits H;

5. there is a Steven-reachability strategy from S;ir to [.7-" 77] in the subgame G and

this can be shown by using arguments similar to those used in item 4.

Since 7; is the smallest child of n after nT, we know that for vertices v in G; =
G\ (H} U T;), we have f(v) = (11,0). Henceforth, we assume for each v € G;, we
have f(v) = (n;,0). Fori=1,...¢, we can show that

6. if R; is the set of vertices in A?. then R; forms a trap. This again follows
from “additive” property of traps, similar arguments to arguing that [}' n] was

a trap;

7. the decomposition A% is in fact an (n;, 7)-attractor decomposition of R; due

to our inductive assumption;

8. on setting G;11 = G; \ R;, we are now only left with vertices v € G;,; such that
f(v) = (9341,0).

The fact that val (F,o) = min{val (D,0),val (£,0)} follows from the definition of
the decomposition F. 0

We say that a Steven decomposition D is a minimum p-respecting decom-
position of G if the valuation val (D, p) is the point-wise minimum among the set of
all p-respecting decomposition. Given a p-respecting Steven decomposition D and a
strategy o such that D is not o-respecting, there is a unique &, which is o-respecting
and also satisfies two properties: (1) val (£, 0) is strictly improving from val (D, p)
and (2) val (£, 0) is the minimum among the set of all o-respecting decompositions
F whose valuation val (F, o) is strictly improving from val (D, p). The uniqueness

follows from Lemma [6.2.1] We therefore define a decomposition £ as minimally
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o-improving from val (D, p) if the valuation val (£,0) is the minimum among all
o-respecting decompositions F of G such that val (F, o) is strictly improving from

val (D, p), in other words, it satisfies the above two conditions.

6.3 Strategy iteration with decompositions

Having defined the valuation for a strategy and a decomposition, we turn our atten-
tion to describing the strategy iteration algorithm based on this valuation. We give
a high-level view of this algorithm, which is later described more formally in Algo-
rithm |2, The algorithm takes as input an (n, d)-small parity game G and has access
to a tree 7 whose root n has even level d. It starts with an Audrey strategy p,
chosen using an arbitrary policy. Following this, a minimum p-respecting (n, T)-
decomposition D of G is computed. Since the decomposition must be p-respecting,
it is an attractor decomposition of the restricted game G|,. This can be done using
methods proposed by Proposition as any game where Audrey has no choice
has a “simple” attractor decomposition.

At each iteration, with the help of a p-respecting decomposition D, we pick
a new Audrey strategy o, using the procedure IMPROVED-STRATEGY. For such
Audrey strategies o and p using decomposition D, we find the minimally o-improving
decomposition £ from the valuation val (D, p). The iterative process restarts, but
now with the strategy ¢ and the newly computed o-respecting decomposition £
instead. The algorithm terminates when the decomposition found is an attractor
decomposition of the input game, or equivalently, the decomposition computed at

the end of an iteration is o-respecting for every Audrey strategy o.

Algorithm 2 Decomposition based strategy iteration algorithm
Input: A game G. > The algorithm has access to the tree T
Output: An attractor decomposition D of G.
1: procedure STRATEGY ITERATION(G)
2 p < an arbitrary strategy of Audrey.
3 D « minimum p-respecting decomposition of G
4 repeat
5: o « IMPROVED-STRATEGY(G, D, p)
6
7
8
9

E « MINIMAL-IMPROVE(G|,,val (D, p) ,n)
peo
D&
until D is an attractor decomposition of G
10: return D
11: end procedure
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There are two subroutines of the algorithm above that need to be discussed.
Firstly, we describe an algorithm that picks the next strategy o in the procedure
IMPROVED-STRATEGY (Algorithm . Secondly, we need to find a decomposition £
that is minimally o-improving from val (D, p). This is described later in procedure
MINIMAL-IMPROVE (Algorithm [4)).

Violating edges. To understand the procedure IMPROVED-STRATECY, which
picks the strategy o, we need the definition of a violating edge. Intuitively, an
edge is violating with respect to a valuation if, along this edge, the valuation is
‘non-decreasing’. An edge u — v of the game G with a T-decomposition is said to

be wviolating with respect to a valuation val (D, p) if
e u€S" or T" and val (D, p) (v) = val (D, p) (u), or
e u € H" and val (D, p) (v) = (x,i) where z > nS.

Observe that no edge in p can be violating with respect to val (D, p), since D is
p-respecting. The procedure IMPROVED-STRATEGY picks an Audrey strategy o by
swapping some (at least one) strategy edges in p for edges that are violating with

respect to val (D, p) as described below.

Algorithm 3 Returns a strategy o that increases valuation in the next step

Input: A game G, a decomposition D, and a (Steven) strategy p.
Output: A (Steven) strategy o of G.
1. procedure IMPROVED-STRATEGY(G, D, p)
2: Eyio < {(u,v) | v is an Audrey vertex and (u,v) is violating in val (D, p)}
3: o is an Audrey strategy with at least one edge from F;, and rest from p. >
The switching policy can be selected based on an algorithm, choosing to include
a strict subset of all violating edges.
4: return o
5: end procedure

The main technical challenge once an Audrey strategy o is selected is in
finding a minimum o-improving decomposition from valuation val (D, p). We de-
scribe an algorithm to find such a decomposition £ with the help of the following

definitions.

The anchor of cycle-winners. For a parity game where Audrey has no choice,
we call cycle-winners for Steven the subset of vertices of the game that are even
and have the highest priority in some (simple) cycle. Computing the set of cycle-
winners can be done in time O(md). In the work of Koh and Loho [KL22|, cycle-
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winners at each step are fixpoints while performing a hybrid of progress-measure
lifting and strategy improvement algorithms.

For constructing the T-decomposition £ that is the minimally o-improving
decomposition from val (D, p), we also make use of such cycle-winners of the re-
stricted game G|,. As a first step to compute this decomposition &, we define a
(0, D)-anchor denoted by L3, which is a map from the set of cycle-winners of the
game G|, to the nodes of the leafy tree £(7) that are also nodes in the tree 7.
Intuitively, it maps all the cycle-winners of G to the smallest skeleton node whose
even level is equal to its priority and is at least as large as its current valuation
val (D, p) when restricted to its first component. For a cycle-winner v in G|, we
define the (o, D)-anchor as

i ifve H"
L5 (v) = {next (775,71(1))) if ves”
next (nT,W(U)) ifvoeT".

Since the first component of val (D, p) (v) is at least as large as Lp(v), it is an
“upper bound” for the first component of val (D, p) (v) restricted to cycle-winners.
We remark here that this map also turns out to be such an “upper bound” for the

first component of the valuation val (€, o).

A description of Minimal-Improve. The procedure MINIMAL-IMPROVE
on a game G, identifies the set R of all cycle-winners such that 7 is an ancestor of

their (o, D)-anchor. Three different sets with respect to R are computed.

1. the set S of vertices with a path to R, but all paths that reach R visit a vertex
with the highest odd priority d + 1;

2. the set H of vertices of priority d that can reach a vertex in R, but without

seeing any vertex of priority larger than d; and

3. the set T of vertices with a path to H, but which encounter vertices of priority

at most d — 1 along the path.

On removing these three sets S, H, and T, the same process is repeated for each
child 7; of node 7 in the tree, returning the respective (7;, T )-decompositions. The
algorithm finally returns the decomposition £ obtained as (H,T,(&,...,E),S).
Vertices that cannot reach a cycle-winner are losing for Steven not only in the

restricted game G|, but also in the larger game G. This is because Audrey has a
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strategy o from each of these vertices, that ensures that Steven cannot win from
them. We assume that while computing the set of cycle-winners, these vertices are

removed by the algorithm and returned as winning for Audrey.

Algorithm 4 Returns the smallest minimally o-improving decomposition &£

Input: (n,d)-small parity game G obtained by restricting game to Audrey strategy
o, a decomposition D of G, and node of even level of 7 in the underlying tree 7.

Output: A subset of vertices W and its decomposition £.

1: procedure MINIMAL-IMPROVE(G, D, 1)

2 R « {v | nis an ancestor of L35(v)}

3 H < all priority d vertices with a path in gsd to R

4: T « all vertices of priority < d — 1 with a path in gsd to H

5: WeHUT

6 G« g\w

7 for each child 7y,...,n; of n in order do

8 (Wi, &) hMINIMAL—IMPROVE(gfd_l, D, n;)

9: Giv1 — G\ W;

10: W WuW,;

11: end for
12: S « vertices for which all paths to W visit a priority d + 1 vertex

13: WeWus
14: return (W, & = (H,T,(&1,...,&),S))
15: end procedure

6.4 Correctness and running time of the algorithm

Our key contribution can be summarised by the following theorem.

Theorem D. For a parity game G with n vertices, d priorities, and a tree T of[ever]
d, each iteration of the strategy iteration algorithm (Algorithm @ on page
takes time 5(|g|d) The valuation (of the decomposition and strategy maintained)
at each step is strictly improving. The algorithm terminates with a T -attractor

decomposition of G within n*|T| iterations.

We provide lemmas and propositions that form a building block for the proof
of correctness and runtime of our algorithm. Computing the runtime of this algo-

rithm is easily tackled with the following propositions.

Proposition 6.4.1. For an (n,d)-small parity game G and a decomposition D and
an Audrey strategy o, computing L7 takes time O(md), where m is the number of

edges in G.
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We assume that the procedure MINIMAL-IMPROVE computes the set of cycle-

winners as well as the (o, D)-anchor L7, in advance as it takes time O(md).

Lemma 6.4.2. The procedure MINIMAL-IMPROVE on an (n,d)-small game returns

an output decomposition in time at most O(mdlogn)

Proof. We assume the set of all cycle winners are computed and also arranged in
ascending order of the value of 17,. Comparing each value takes O(d) time and
therefore sorting takes at most time O(mdlogn) and does not increase the claimed
asymptotic runtime.

The algorithm’s most crucial part outside the recursive call is identifying the
set R and later, once this set of vertices R is identified, computing H, T and S.
A naive analysis would indeed give us an unpleasant run-time of O(mnd). There
are nd many possible values for 7, and each 7 requires us to compute R, and its
associated sets H, T and S, which would take O(m) time each. But, we show an
amortised runtime of our algorithm is O(mdlogn).

Once the cycle-winners are arranged in ascending order of their L7, values,
finding R for each sub-call on the node n amounts to doing a binary search for the
interval which contains the values where 7 is an ancestor of I7,. This takes dlogn
time, since comparison takes time d and the binary search part takes O(logn) time.

The crux of our argument reduces to showing that each edge is touched at
most O(d) times overall outside of the operations discussed above. For this, we first
make the following observations. Consider a vertex w in the game. It can reach
some cycle-winner as the game is winning from every vertex. Suppose v is the cycle-
winner that has the smallest anchor value L% (v) among all cycle-winners that v can
reach. Let 1) be this value L5 (v). In the decomposition &, we have that u € H, or
Tg or Sg where v = 7|, for some even p. Such a value p is the largest value such
that (1) there is a path in G from u to v, or (2) there is a path in G¥**'. This is
because by assumption, there is no path from u to any cycle-winner with a smaller
value with respect to 5.

We assume computing the reachability set is done using a backwards manner,
that is, all the predecessors are iteratively added in a queue and the traversal is done
using a BFS algorithm but for the revered graph G. This is reminiscent of attractor
computing algorithms for a game, that start from a target set and considers edges
in reverse order. In this case, each vertex with an edge from vertex w is considered
in either reachability set for at most d calls, one for each ancestor of the smallest
cycle-winner that « can reach. Once it is identified as being in any of the sets Hg,

T g or Sg, it is removed from the current set of vertices. This ensures that each
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edge with u as a source is touched at most O(dd) times, where § is the outdegree
of u. The same holds for any vertex u, thus bounding the ammortised runtime by
O(mdlogn). O

Our most technical lemma is stated below, but we postpone the proof to

later in the section.

Lemma 6.4.3. Algorithm @ on input an (n,d)-small parity game G and a tree T
of even level at least d, satisfies the mono-variant that the the valuation val (D, p)
obtained from the Steven T -decomposition D of G in Line[§ and Audrey strategy p in
Line[7 is strictly improving from tuple formed by the valuation of the decomposition

and strategy in the previous iteration.

Assuming Lemma [6.4.3] and writing Dj, and p; to denote the values of D
and p at the end of the Eth iteration, we get val (Dq,p1) & val(Da,p2) & -+ &
val (D, p1.). There can be at most n(2n — 1)|7 | many functions from V — M(T),
the number of iterations cannot be larger than n(2n — 1)|7|. The algorithm ter-
minates when D is an attractor decomposition. Since each step takes O(mdlogn)
according to Lemma time our algorithm also takes time O(md(2n — 1)|T]).

For all Audrey strategies p, an attractor decomposition A is p-respecting. We
can show inductively that for the k™ iteration, val (Dy, pr.) E val (A, pr). Since we
start from the smallest possible decomposition, and increase minimally at each step,

we reach the attractor decomposition with the smallest valuation for all strategies

p.

Tight, wobbly and stretched. Given a p-respecting decomposition D of a game
G, an edge u — v of a game G is said to be tight with respect to val (D, p) if

e val (D, p) (u) = (ns,i) and val (D, p) (v) = (175,2' - 1) for i € [1,n—1] and we
say (nS,O) = (n,0); or

e val (D, p) (u) = (nT,z’) and val (D, p) (v) = (nT,i - 1) fori € [1,n—1] and we
say (nT,O) = (n,0); or

e val (D, p) (u) = (n,0) and val (D, p) (v) = (x,) such that x|(,) = 7.

Intuitively, an edge u — v is tight with respect to a valuation if the valuation of u
was any smaller, the edge would be violating.

If there is an edge in a decomposition val (D, p) that is neither tight nor
violating, we call the edge wobbly. We call an Audrey positional strategy o stretch-
ed with respect to val (D, p) if the strategy o (which consists of all of Steven’s edges

along with one edge from each of Audrey’s vertices) has no wobbly edges.
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Proposition 6.4.4. Given a game G, an Audrey strategy p and D, a p-respecting de-
composition, then IMPROVED-STRATEGY (G, D, p) returns a strategy o that is stretch-
ed with respect to val (D, p).

Remark 4. Any edge u — v in G|, where o is stretched with respect to val (D, p)
s such that

e val (D, p) (u) = (ns, k:) and val (D, p) (v) = (775, k— 1) or
e val (D, p) (u) = (nT,k) and val (D, p) (v) = (nT,k - 1) or
e val (D, p) (u) = (n,0) and val (D, p) (v) = (x,i) such that x| = 1.

So far, we have observed that IMPROVED-STRATEGY returns a stretched de-
composition. Our next key lemma states that for a stretched decomposition D with
respect to o, the procedure MINIMAL-IMPROVE(G, T, 0, D) returns the respective

minimum o-improving decomposition from the current strategies.

Lemma 6.4.5. Given a game G, a p-respecting Steven decomposition D, and an
Audrey strategy o that is a stretched with respect to the valuation val (D, p), the
procedure MINIMAL-IMPROVE(G, T, o, D) returns the minimum o-improving decom-
position & from val (D, p).

To prove the lemma, we break it down further into two propositions, Propo-
sitions and which lead to the proof of lemma [6.4.5

Henceforth we assume these lemmas are stated for a game G, a strategy
p of Audrey, a p-respecting decomposition D, and a strategy o that is stretch-
ed with respect to val (D, p). Let A be the minimum o-respecting decomposition
with respect to val (D, p).

Proposition [6.4.6] states that the anchor of a cycle winner helps find an upper
bound on the value of the valuation of such a minimally o-improving decomposition
A in cycles. Later, Proposition [6.4.7] extends this to not just cycles but to vertices
with paths to such cycles.

Proposition 6.4.6. For a even cycle C in G|, let n = L5 (v), then

e val (D, p) (v) s val(A,0) (v) < (n,0), where v is a cycle-winner in the cycle
C, and

e val (D, p) (u) sval(A,o) (u) < (nT, k:), for any u in the cycle C, and where k
is the length of the path from w to some vertex of priority d in C.
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Proof. The first half of both of the inequalities that val (D, p) (v) < val (A, o) (v)
and val (D, p) (u) < val (A, o) (u), follow from A being the minimum o-respecting
decomposition with respect to val (D, p).

To show val (A, o) (v) < (L%(v),0), we construct a o-respecting decomposi-
tion B such that (1) val (D, p) E val (B,o) and (2) val (B, ) (v) = (L%(v),0). Since
the valuation of A is smaller than any B that is o-respecting, the inequality follows.

Since v is a cycle-winner, there is a cycle C' where v has the highest even
priority d in the cycle. Let the cycle C consists of vertices ug, ..., u, and the edges
in the cycle are from each u; and u;,1. Moreover, we refer to v as both ug and wyyq
in our proof.

We define a o-respecting decomposition B by defining two sets corresponding
to the partitions of the decomposition as follows: HZ = {u | u is a cycle-winner of C'}
and Ty = {u € C'| u is not a cycle-winner of C'}. All the other sets in the decompo-
sition are declared to be empty. Observe now that the valuation of such a B above

along with the strategy o can be deduced to be

(n,0)  wis a cycle-winner of C'
val (B,o) (u) := (nT, k:) u has distance k to the set of all cycle-winner in G,
T u ¢ C.

We remark that in the cases where u is not a cycle-winner, but can reach one, k
denotes the length of shortest path in G, to a cycle-winner. To show val (D, p) (u) <
val (B, o) (u), first observe for u ¢ C, these vertices aren’t present in the decompo-
sition and hence its value is set to T. We show val (D, p) (u) < val (B,o) (u) for
u € C. We prove this using induction along with the fact that D is a stretched de-

composition.

Base Case. For vertices u in the cycle whose shortest path to a cycle-
winner of C' is 0, we know val (B,c) (u) < (n,0) by definition. Let us assume

(77T, 0) to also represent (7,0) henceforth.

Induction step. If for each vertex w in the cycle C, if the shortest path
from w to a cycle-winner of C' is i and val (D, p) (w) < (nT, 73), then for for vertices
u in the cycle whose shortest path to a cycle-winner of C is ¢ + 1, from Remark
val (D, p) (u) < (nT,i + 1).

Since o-respecting decomposition labellings are closed under point-wise min-

imum from Lemma the minimal o-respecting decomposition A larger than
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val (D, p) should also be such that val (D, p) (v) < val (A,c) (v) s val(B,0) (v). O

Proposition 6.4.7. For a cycle-winner v of G, that has priority p and for some
vertex u is such that (1) u has a greater even priority than p, that is, m(u) = d = p,

where d is even and (2) there is a path from u to v in Qljd, then
e val (D, p) (u) < (n,0); where n = L5(v)]4.
Moreover, val (D, p) (w) < (nT, k:), for any w that has a k-length path to u.

Proof. Consider a path from u to v in (Q|U)sd: U= U > Uy e U = . Since
o is stretched with respect to val (D, p), from Remark |4, we know that if we let the
first component of val (D, p) (u;) be x; then we have x|z < ... 2;|g S Tiz1|ga ... <
2kla < Lp(v)|g = n. This shows val (D, p) (u) < (1,0).
To show val (D, p) (w) < (nT, k:) is very close to the inductive proof in Propo-
sition This is done by the induction on the length of the shortest path to wu.
O

Using Propositions and as building blocks, we prove Lemma[6.4.5

We restate the lemma again for convenience below.

Lemma 6.4.5. Given a game G, a p-respecting Steven decomposition D, and an
Audrey strategy o that is a stretched with respect to the valuation val (D, p), the
procedure MINIMAL-IMPROVE(G, T, o, D) returns the minimum o-improving decom-

position € from val (D, p).

Proof. Let A be the minimal o-respecting decomposition with respect to val (D, p).
We argue that val(€,0) = val(A,0) where £ is constructed by the procedure
MINIMAL-IMPROVE(G,, n, L3).

Induction hypothesis. If for each vertex v, val (D, p) (v) = (n,0) then
MINIMAL-IMPROVE(G|,, D, T, n;) returns £ and W such that

(a) W ={w | val (A,0) (w)| < (n”,n-1)}.
(b) val(&,0) (w) = val (A, o) (w) for all w € W.

To show point (b) above is equivalent to showing that when restricted to W,
we have val (£,0) E val(A,0) and & is a o-respecting decomposition such that
val (D, o) E val (£,0). The second part of the statement follows because if £ is a
o-respecting decomposition whose decomposition labelling is larger than that of D,
and is also an attractor decomposition, from the closure under minimum of attractor
decomposition (Lemma , we also get val (A, o) Eval (€,0).
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Showing Hg = HZ. The set H consisting of all vertices of priority d that have a
path to a some cycle-winner, v such that L3 (v)|4 = 1 is then identified. From Propo-
sition we know that for all v € H, we have val (D,0) (v) < val (A,0) (v) <
(n,0). Consider any path from v to u. Since by assumption, we know for all vertices
w in G val (A,0) (w) = (n,0), we know val (A,0) (v) = (n,0) for all v € H. Since
E(w) = (n,0), for all v € H, we have val (A,0) (v) = val (£,0) (v) for all v € H.
We show that for any v ¢ H, val(A,0) (v) > (n,0). Consider any path
from wu, of priority d = Even-level (1), consisting of only tight edges with respect
to val (A, o) from some vertex valued at (n,0) by val (A, o). This leads to an even
cycle, let w be a cycle-winner of such an even cycle. We show that L5 (w)|q < 7,
which ensures that v € H. Indeed for the path u —» u; = ug — +++ = u, = v,
where all edges are tight, for each i that we have x;|; = x;;1|4, where z; is the first

component of val (D, o) (u;).

Showing T; = TZ. T consists of vertices in the game that have a path in (QU)Sd
to the set H. We know from Proposition that val (D, p) (u) < val (A,0) (u) <
(nT, k) where k is the length of the shortest path in Qsd to some vertex in H.

We can also show val (A,0) (u) = (nT, k:) For this, we only need to follow
tight edges with respect to val (A, o) from u. If these tight edges lead to some vertex
such that val (A, o) (v) = (n,0), then we know this path has length at least & and
therefore val (A, o) (u) = (nT, k) If the first skeleton node encountered by such a
tight path is not 7, and instead 77', we know n' > 1), since 7 is the root node of the
tree, and hence val (A,0) (u) = (n', O) > (nT, k) This ensures that T' is exactly the
set of vertices valuated by val (A, o) to (nT, k:) for some k. Since k corresponds to

path lengths, it cannot be larger than |V| — 1.

Showing &; = A;. For each child n; of n, we call (W}, &;) to be the output
by MINIMAL-IMPROVE ((G;)|s, D, T,n;), We will show that if for all 4 < j if

(a) Wi ={w]|val(4,0)(w) < (n,",n—1)} and (b) &lw, = Ailw,,
then
@) W ={w|val(4,0)(w) < (n;°,n—1)} and (i) &lw, = 4;lw,.
For a base case, observe that val (A, o) (v) = (11, 0) for all vertices v € gt
From our induction hypothesis the above two conditions (i) and (ii) follow for j = 1.

For j > 1, notice that gf =1 consists of vertices not in any W; for ¢ < j. More-

. . . <d-1
over, it consists of no vertex in H'y or T';. Hence, for v; € gj ,val (A,0) (v;) =
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(1;,0). And thus, (W;,&;) = MINIMAL-IMPROVE ((G;)|s, D, T,n;) by induction

hypothesis satisfies the above conditions.

Showing Sg = SZ. Observe that Sg = S which consists of vertices for which all
paths to R visit a priority d + 1 vertex. For each vertex v € S, let k be the shortest
length path to some w such that w in turn has a path that visits R without seeing
a vertex of priority d + 1. Indeed such a path must exist since all vertices in R
themselves have priority at most d. We argue that val (D, p) (v) < val(A,0) (v) <
(ns, k:)

For any u that has a path that visits R without seeing a vertex of priority
d + 1, we have val (D, p) (u) = (x,7), where x|; < n, and therefore u must be in
either H, T or W; for some i. Hence val (A, o) (u) < (x,i) for x € £ (T) such that
z|qg=n.

Suppose the shortest path from v to w has length 1, then such a v must have
priority d + 1. Since val (A,0) (u) < (x,i) for x € L(T) such that z|; = n, this
implies val (A, o) (v) < (775, 1).

The proof that a vertex which has a path of length k£ and not shorter path to
some vertex u above satisfies val (A, o) (v) < (775, k:) follows from routine induction.

Similar to the arguments for 7', by following tight edges for some v € S, we
can also conclude that S is also exactly the set of vertices such that val (A, o) =
(nS, k) for some k. O
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Chapter 7

An asymmetric attractor based

algorithm

Progress-measure lifting algorithms for solving parity games have the better worst-
case asymptotic time and space complexity [Jur00, [JLI7, [EJ dK 19 DS22] compared
to the symmetric attractor-based algorithms [McN93, [Zie98, LPSW22| [IMT22]. On
the other hand, attractor-based algorithms, and more specifically the McNaughton-
Zielonka algorithm [McN93| Zie98], consistently outperform other algorithms in
practice while having exponential running time in the worst-case [vDI18| FJAK 19,
BDM18]. A natural conjecture for the reason behind the success of several attractor-
based algorithms, and especially McNaughton-Zielonka, could be attributed to re-
peated computation of attractors. Computing attractors in itself is a relatively fast
operation and such computations performed during the algorithm can remove large
sets of vertices resulting in smaller subgames to work with. However, attractor-
based algorithms, even the quasi-polynomial ones, have a worst case running time
that is approximately the square of the running time complexity of similar progress-
measure-based algorithms.

In this chapter, we propose a new attractor-based algorithm with the aim of
achieving practical efficiency through repeated computation of attractors, alongside
possessing theoretical guarantees that align with state-of-the-art algorithms. But
unlike other McNaughton-Zielonka-like algorithms, our algorithm is an “asymmet-
ric” algorithm that builds only the attractor decomposition for one player. Our
definition of an attractor decomposition is based on ordered trees, and for an ap-
propriate universal tree T, a parity game always has a T-attractor decomposition.
Our algorithm is parameterised by trees whose branching dictates the recursive calls

made. Unsurprisingly, when instantiated with an appropriate universal tree 7T, our
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algorithm builds a T-attractor decomposition. The running time complexity of our
algorithm is linear in the size of such a tree underlying the game and polynomial in
the size of the game. Our algorithm, when the underlying trees are complete trees,
produces an exponential algorithm whose running time is comparable to the Jur-
dzinski’s progress measure algorithm (up to a polynomial factor), but computes the
attractor decomposition output by (an enhanced version of ) McNaughton-Zielonka.
The same algorithm has worst-case running time that matches the running time

(up to a polynomial factor) of state-of-the art algorithms like that of Jurdzinski

and Lazié¢ [JL17] if the underlying tree is the [Jurdzinski-Lazi¢ universal tree, or the

runtime of our algorithm in Chapter [5|if the underlying tree is the [Strahler Univer-|
[DJT20]. In contrast, symmetric attractor based algorithms whose mutual

recursive calls are dictated by similar recursive trees take time that is a square of

such universal trees instead.

Our key ingredient to achieve this algorithm is using the notion of a de-
composition of a game. This concept, as introduced in Chapter [f] is a relaxation of
attractor decompositions. In our recursive algorithm, these decompositions are used
to encode the progress made in previous recursive calls. Instead of restarting each
recursive call from scratch, we use decompositions to expedite the process and serve
as a succinct, yet robust encoding of the progress that was made in earlier recursive
calls. This modification to the decomposition during each recursive call is done in a
careful manner so as to satisfy monotonicity requirements which help us argue that
our algorithm terminates faster than versions that do not use such decompositions.

The idea of reusing information from previous recursive calls for algorithms
that solve parity games has been touched upon in works as early as the 1990s. In
fact, Long, Browne, Clarke, Jha, and Marrero [LBC+94] proposed the idea of utilis-
ing the information obtained from earlier recursive calls to aid subsequent recursive
calls. They tackled the challenge of model checking modal p-calculus formulas, a
problem that is polynomial time equivalent to solving parity games. Their algo-
rithm had a running time of O(nd/ 2), which was a quadratic improvement over the
best algorithm obtained by solving parity games via McNaughton-Zielonka algo-
rithm [McN93, [Zie98| [EL86]. Nonetheless, their approach suffered from exponential
space complexity. Similar to our approach, they heavily rely on monotonicity ar-
guments to demonstrate faster termination. However, our algorithm distinguishes
itself by requiring only polynomial space, as well as performing repeated computa-
tion of attractors. Furthermore, when instantiated with quasi-polynomial universal
trees, our algorithm achieves theoretical complexity comparable to the state of the

art.
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7.1 Finding attractor decompositions

Attractor decompositions are witnesses of winning for parity games and we begin

by asking a natural question about them.

Question 7.1.1. For a tree T and an (n,d)-parity game, can we compute a canon-

ical (n, T )-attractor decomposition for G?

The above question without the word canonical is trivial, since we can create
an (n, T)-attractor decomposition by just declaring most parts associated with such
a decomposition to be empty to form a T-attractor decomposition. Given a tree, we
therefore want to find the “best” attractor decomposition, or one that identifies the
largest possible winning set for this tree. We describe an algorithm that does that.
The reader can find similarities between Algorithm [5| below and the McNaughton-
Zielonka algorithm [McN93, [Zie98]. More specifically, we remark without further
proof that it closely resembles the Jurdzinski-Morvan algorithm, where one tree is

the complete tree and the other tree is the tree 7.

Algorithm 5 Computes an attractor decomposition of G

Input: A game G (with maximum even priority d), a node 1 (of even level d) in
the tree T.

Output: An attractor decomposition of G.

1. procedure ATTRACTORDECOMPOSITION(7, G)

2 S «all vertices in the Audrey attractor of all vertices of priority d + 1

3 H" « all vertices in G \ S of priority equal to the level of

4: T" « vertices in the strict Steven attractor to H” in G\ S

5: W eT"uH"

6 for each child 7y, ...,n; of n in order do

7 A; <« ATTRACTORDECOMPOSITION(7;, G \ (S U W))

s W [AY]

9: W e WuW,;

10: end for

11: A« Audrey attractor to G\ W

122 if A'NW = @ then

13: S « vertices in the strict Steven attractor to W in G
14: WeWus"

15: return (W, (H",T", (Ay,..., Ax),S"))

16: else

17: return ATTRACTORDECOMPOSITION(7, G\ A

18: end if

19: end procedure

For each node 7 of the tree, the set of vertices S from which Audrey has a
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strategy to visit a priority vertex d + 1 is first removed from G. In the remaining
game, the algorithm identifies some sets of the attractor decomposition the set H"
of vertices of the highest priority and the set: T" of vertices that are in the (strict)
Steven attractor to H". Excluding the above vertices, for each child 7; of 7, we
obtain recursively the (7;, T )-attractor decomposition of the subgame induced a
subset of vertices W;.

The algorithm then checks if the set W consisting of H"” and T" along with
all the sets W, forms a trap for Audrey. If W is indeed a trap for Audrey, then the
set of vertices that are in the Steven attractor to W is computed and declared to be
S". If instead Audrey can escape W, then the process is restarted after excluding
these vertices.

The correctness of Algorithm [5/ can be proved using a routine induction (on
the number of nodes on the tree 7) that the algorithm returns a 7-decomposition
A= (H"T" (Ay,...,A),S") of the largest dominion of G that has a T-attractor
decomposition.

The process terminates as each recursive call is made to a smaller subgame
or, alternatively, with a smaller tree. Although we can show that this process
terminates, we can also show that this procedure has an exponential worst case
complexity. If the time taken for game with n vertices and a tree 7 which has
height h and ¢ leaves is denoted by R(n, h,¢), then we can deduce that

R(n,h,t) < R(n—1,h,0) + R(ny,h—1,01) + -+ R(ng,h — 1,4;,) + O(m)

where

e n,; denotes the number of vertices made in the call made in the for-loop with

the root 7;, and
e (; denotes the number of leaves of the tree rooted at n; in 7.

Moreover, we assume that if £ = 1 or if n = 0, then R(n,h,f) = 1. Using the fact
that the tree 7 has height d/2 along with a routine analysis of the above recurrence
shows that the time taken can be bounded by n/ 2|7'|. In the next section, we
propose a different, carefully engineered, attractor-based algorithm whose running
time can be bounded instead by a function that is linear in the size of the tree and

polynomial in n.
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7.2 A faster attractor-based asymmetric algorithm

We propose our new procedure in Algorithm [6] where we build on the attractor de-
compositions obtained by earlier recursive calls instead. This is done by maintaining
the decompositions obtained in successive recursive sub-calls and modifying them
until we finally produce an attractor decomposition.

Given an (n,d + 1) parity game G, a tree T, and a node 7 of the tree that
has an even level d, our algorithm computes the (7, T )-attractor decomposition of
the largest dominion that has an (7, T')-attractor decomposition. The algorithm has
an underlying 7T-decomposition that it maintains globally, and each recursive call
has access to this decomposition. We also assume that the first external call to this
subroutine initialises the decomposition D where all vertices of priority d + 1 are in
Sg, all vertices of priority d in G are in Hg and all the other vertices in G are in
Th.

Algorithm 6 Computes the T-attractor decomposition of the Steven dominion of

g

Input: A game G (with maximum even priority d), a node 7 (of even level d) in the
tree 7. The first external call to this subroutine initialises the decomposition D
where all vertices of priority d + 1 are in S%, all vertices of priority d in G are
in Hg and all the other vertices in G are in Tg.

Output: An attractor decomposition of G.

1: procedure AAD(n, G)

2 while D is not an attractor decomposition do

3 U « vertices in the Audrey attractor to S%
" [D"] « [D"] o U

5: Sph e SHuU

6 T « vertices in the Steven attractor to Hg in game [D"]
7 ReTH\T

8 Movep (R)

9: for each child 7q,...,n; of n € T in order do
10: AAD(n;, [D"])
11: end for
12: S « vertices in the Steven attractor to [Dn]
13: R «Sh\S
14: Movep (R’)
15: end while

16: end procedure

The decomposition is iteratively modified by the algorithm as described be-
low. In every iteration, in lines [dand [5] the algorithm removes the set of vertices U

that is in Audrey’s attractor to S% in G and adds the vertices in U to S%. This step
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ensures that the subgame [Dn] is an Audrey trap (the complement of an Audrey
attractor is a trap for Audrey). The removal of U is denoted by [Dn] — [Dn] e U,
which results in the removal of the set U from each of the parts of the decomposition
contained in [D"]. The vertices in U are added instead to the side-set Szn).

In line @ the Steven attractor T to the vertices H% with highest priority is
computed. Observe that any vertex that is in Tg but not in T are vertices from
which Steven does not have a strategy to visit the set of highest priority vertices
Hg. Hence, in line (7], vertices R that are currently in top-set Tg but not in the
attractor T are identified, and in line [§| this set R is “moved”. The modification
done by Move is defined more rigorously later, but intuitively, after performing
Movep (R) the decomposition D is changed so that the vertices in R are no longer
in the part Tg and relocated to part S” or to parts associated with the node v which
is greater than 7. In line recursively, the (7;, 7) decompositions are computed
for the complement of the game, one after another for each child 7; of the node 7.
In line the Steven attractor is computed to the set of vertices that is currently
in [Dn] and in line the set R' of vertices in S% but not in the Steven attractor is
computed. These vertices are finally “moved” in the decomposition in line [14] and
the vertices in R' are now associated either to the parts corresponding to the next

sibling of 1 or the side-set of a parent of 7 if there is no next sibling.

7.2.1 An order between decomposition

Although we compute attractors, our algorithm can also be reformulated as a lifting
algorithm on specific lattices designed for a parity game. We exploit this fact to
show the algorithm’s correctness and running time. The proofs of correctness of the
algorithm and its termination indeed use monotonicity arguments based on a partial
ordering of the set of all decompositions. Therefore, our key technical ingredient
is to define this partial order (for a fixed tree 7 and a parity game G) on the set
of all (n,T)-Steven decompositions for all nodes n in 7. Henceforth, we assume
decomposition to refer only to Steven decompositions by default.

In the previous chapter, we had given a valuation for a tuple consisting of
decompositions D and an Audrey strategy o for o-respecting decompositions D. But
here we define a similar ordering on the set of all decompositions without reference
to a strategy.

For a tree 7 in which all leaves have the same depth, recall the definition
of a leafy tree of T, denoted by L (7). We use the ordering of a leafy tree’s nodes
again to produce such a partial ordering on the set of all 7-decompositions. For

each decomposition D, we define the decomposition labelling of D, denoted by dp,
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as the following map from the vertices to the totally ordered set L(T) U {T}:

v forveH,
7T if veT”,
op(v) =4 ¢
v ifves,
T ifogH UT"US forallyeT.

For a game, G, and two (7, T )-decompositions D; and Dy, we say Dy E Dy
if 6p, E dp,, where E compares the decomposition labellings pointwise.

Observe that any map ¢ is the decomposition labelling of some decomposition
D if for all v,

e 7(v) < Even-level (6(v)) and
e if 6(v) =n € T, then w(v) = Even-level (§(v)).

Furthermore, any D also has a decomposition labelling § which also satisfies the
above mentioned. The set of decompositions is in bijection with the set of decompo-
sition labellings which satisfy the above property. We highlight that decomposition
labellings are therefore a different representation of the same concept. Since the
order of a decomposition is inherited from its associated labelling, which is a lattice,

the set of decompositions forms a lattice.

Example 5. In Fig. we give two decompositions (similar to Fig. in the
previous chapter) to demonstrate the underlying order we have introduced among
the decompositions. For the tree with three leaves, we see that the decomposition D
i Fig. 1s smaller than decomposition & in Fig. . This is because for
the two vertices of priority 2 that are unshaded the decomposition dp is pointwise
at most as large as 6g. Indeed the decomposition labelling ép maps these vertices to
nodes €11 and eiql, whereas the decomposition labelling 6¢ maps both the vertices to

the node €91, which is strictly larger.

Maps from vertices to leafy trees that are the decomposition labellings of
attractor decompositions can be expressed using a combination of local properties
(one-step progress) and global properties (attractors). Therefore, these maps re-
semble both progress measures and attractor decompositions. We call such maps

attractor-decomposition labellings.

Proposition 7.2.1. A map § from the set of vertices of a parity game G to
a leafy tree of T is the decomposition labelling corresponding to an (n, T )-Steven
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Figure 7.1: Two decomposition where D E £

attractor decomposition A of G if and only if it satisfies the following conditions for

all vertices v
e m(v) < Even-level (6(v));

e if6(v) =n and n € T, then w(v) = Even-level (6(v)) and there is a one-step
strategy for Steven to visit a vertex u such that §(u) < ns;

e if6(v) =z and x = nT orx = nS, then there is a reachability strategy from u

to vertices in {u | 6(u) < x} that avoids any vertex from {u | §(u) > x}.

This ordering on attractor decompositions is robust as the set of all attrac-
tor decompositions is closed under taking the minimum. We show this in Proposi-
tion using Proposition thus showing that attractor decompositions form
a semi-lattice under the order E. More importantly, for a tree 7, there is a unique

minimum 7 -attractor decomposition of the game G.

Proposition 7.2.2. For an (n,d)-small parity game G, a tree with even level d, and
two T -attractor decompositions Ay and As of dominions Dy and Do, respectively,
of G, the minimum decomposition A of both is an attractor decomposition A of the
dominion Dy U Dy of G.

Proof. Consider D to be the decomposition obtained from the point-wise minimum
of the decomposition labelling §; and d5 of A; and Ay respectively. This ensures
that D thus defined is a minimal decomposition. All that remains is to show that it
is an attractor decomposition, which we do by inductively (inducting on the height
of the tree). We only state that for trees with height 0, the proof is routine.

We show inductively that D is an (n, 7 )-attractor decomposition.

Induction hypothesis. If for all v, since §(v) = min{d;(v),d2(v)} = n, then D

so defined is an (7, 7)-decomposition.
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We only need to show that § satisfies the conditions mentioned in Propo-
sition We list the conditions as in the proposition and show that they are
satisfied.

e 7(v) < Even-level (§(v)) and more specifically we also have if §(v) = n for
n € T, then w(v) < Even-level (6(v)).

e Assume without loss of generality that d;(v) = §(v).

— v belongs to Steven, then we know that there is some neighbour u such
that 6(u) < 0;(u) < n°.

— v belongs to Audrey, the same argument works for all of its neighbours.

e If 5(v) = z and z = 775 or r = nT, then, without loss of generality, there
is a reachability strategy for Steven from u to vertices in {u | d;(u) < x}
that avoids any vertex from {u | 6;(u) > x}. Observe that in the set {u |
d1(u) <z} € {u| d(u) <z} and {u | 61(u) > 2} 2 {u | 6(u) > x}. So, the
same reachability strategy as that of Steven would work for the decomposition
labelling 4. O

7.2.2 A discussion on Move

We describe Algorithm |8 using Movep (R), which is defined only when the set R is
in the same part, either S” or 77, for some node ~ of the decomposition D. The
subroutine increases the value of the decomposition by modifying it so that only the
vertices in R are rearranged. But the increase should ensure that it is still smaller
than the smallest attractor decomposition. We provide a way to implement this
operator below in the proof of Proposition [7.2.3] Here, we instead take the view of
how each decomposition corresponds to decomposition labelling and then modify it

so that it increases minimally in its valuations at R and nowhere else.

Proposition 7.2.3. The modification by the subroutine Movep (R) of a decompo-

sition D can be implemented in nearly linear time.

Proof. We assume that the decomposition is represented by its corresponding de-
composition labelling. We first define a useful operator & for a subset of vertices R,
and a Steven decomposition D and a node 7 at even level p. We use as shorthand

[D"] ® R to denote the following sequence of modifications to D
o H) « H)U (R N ﬂ_l(p)),

o T}« H)U (R nr (< p)), and
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o ShHLU(Rna ' (p+1)).
We define smallMovep (R), where we have R € T. g, as the following operator
o Tj, « TH\ R.
e If 1) has a child and let 7; be the first child, whose even level is p then [D"'] ® R.
e If 1 is a leaf, then we re-assign the vertices to the side-set Sg — S% U R.
For R ¢ 5’%, we instead modify the decomposition as follows:
o S}« SH\R
e If n is the last child of its parent ~, then S% «— S% U R.
e If not, then let v be the sibling of 7 and modify D by [D"'] ® R.

Since the relabelling of vertices in R requires the algorithm to only compute the

next sibling or parent, we assume such operations take at most linear time. O

We state here that Movep (R) modifies the decomposition and satisfies the

following properties:

1. it is larger than D;

(\V)

. all vertices not in R belong to the same parts as in the decomposition D;
3. all vertices in R are not in the same parts as in decomposition D;
4. it is no larger than the smallest attractor decomposition larger than D.

Note that many different decompositions can satisfy the above properties. We em-
phasise that any decomposition that satisfies the above four properties is sufficient to
prove correctness, but restrict ourselves to the one explicitly constructed in Propo-
sition [[.2.3]

We also take this opportunity to remark that one can view our algorithm as
a progress measure algorithm, however, restricted to very specific kind of ordered
trees. In fact, decomposition labellings capture exactly such measures. The striking
difference is that progress measure algorithms are generic frameworks in which one
can use any policy to decide the order in which to lift vertices, whereas ours dictates
a rigid order on the set of vertices (rather than a specific vertex) that need to
be lifted. On the other hand, we regain some flexibility, since we are allowed to
moderate by how much a vertex is lifted. This is captured by our description of a

Move subroutine that is only required to satisfy items 1-4.
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7.2.3 Correctness and running time
We state our main theorem, to prove which we require Lemmas and

Theorem E. For a parity game G and a tree T, Algorithm @ (on page
takes time at most linear in the number of nodes in T and polynomial in the size
of the game G to produce the largest Steven dominion that has a Steven T -attractor

decomposition.

The correctness of our algorithm follows from Lemma which, in turn,
uses Lemma [7.2.5] The latter states that each iteration of the while loop increases
the underlying decomposition. This lemma is also key to concluding our desired
runtime.

Later in Lemma we argue that at most O(md) time pases before there
is a change in the underlying decomposition. Since there are only n|7 | many decom-
positions, this ensures that the algorithm terminates in time O(nmd|T|). Therefore,
we also get our desired running time, which is at most O(nmd|7|). The rest of the

section is dedicated to the proof of Theorem [E]

Lemma 7.2.4. For an (n,d)-small parity game G, a tree T and a node n whose
level is at least as large as d, procedure AAD(n,G) in Algorithm @ returns the

smallest (n, T)-attractor decomposition of G.

Proof. To prove correctness of the algorithm and the above theorem, we prove a
stronger technical lemma from which we can obtain the theorem as a corollary. Ob-
serve that we assume that the algorithm initialises the decomposition to the smallest
decomposition. For a decomposition D, we show in Lemma that one iteration
of the outermost loop modifies the decomposition in a way that this decomposi-
tion increases, whilst remaining smaller than the smallest attractor decomposition
larger than D. Since the while loop terminates only when the decomposition D is
an attractor decomposition, we can conclude from the above that the decomposition
obtained at the end is the smallest attractor decomposition larger than D. Since the
algorithm starts with the smallest D, it terminates with the smallest (1, T )-attractor

decomposition A of G. O

Lemma 7.2.5. For an (n,d)-small parity game G, a tree T and a node n whose
level is at least as large as d, if D is the decomposition at the beginning of each
iteration of the procedure AAD(n,G) in Algorz'thm@ then at the end of the iteration,

the decomposition maintained is always:

o strictly larger than D, and
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e smaller than A, which is the smallest attractor decomposition larger than D.

Proof. We proceed inductively on the sum of the number of nodes in the subtree of
T rooted at 1 and the number of vertices in G. If the number of vertices is 0, then
trivially D forms an attractor decomposition of G.

Since we use monotonicity properties to argue correctness in our proofs, it
is more natural to refer to the corresponding decomposition-labellings of the com-
puted decompositions. Let A denote the smallest decomposition larger than starting
decomposition D, and let o denote the decomposition labelling of A. The overall
structure of the proof is to argue that each modification done to the algorithm

satisfies the conditions given in the lemma.

Lines [4] and The algorithm first computes the Audrey attractor to vertices in
S"in G. Let § be the decomposition labelling of such a decomposition. If there is
no intersection between [Dn] and U, then note that [’Dn] forms a trap. If not, and

there is an intersection, we show that for all vertices u € U \ S” in the intersection,

a(u) = nS in Proposition

Modification done by Line The attractor T to the set of highest priority
vertices in [Dn] is computed. The set of vertices R = Tg \ T is first identified,
and the operation Moveg (D) is performed. If Tp = T, then no change is made
to the decomposition D as R = @. If not, recall that as defined earlier,
modifies D to a decomposition £ that is larger than D, all the vertices not in R are
left undisturbed, and all the vertices in R are reallocated to a different partition
such that the decomposition obtained is larger. Since for all v € R, we must have
a(v) > " due to no Steven strategies to reach T = {w | 6(w) < nS} without

visiting any vertices in {w | §(w) > n°}.

The For loop. For each child n; of n, we know from inductive hypothesis that
ADD(#n;, T,[D"]) ensures that the decomposition after the procedure is an (n;, T)-
attractor decomposition when restricted to the set of vertices in [Dm ] Additionally,
we know that the decomposition does not increase more than the attractor decom-

position for the subgame [D"], and therefore for the whole game.

Modification done by Line Finally, the attractor S to the set [D"] is
computed. The set of vertices R = S% \ S is identified. Since there is no Steven

attractor strategy from the set of vertices currently assigned by ¢ to nS, for all
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v € R', we must have a(v) > nS. Note that this is exactly the operation Moveg (D)

performs. O

Proposition 7.2.6. For an (n,T)-decomposition D of a parity game G, if Audrey
has a strategy to visit 5’% from all vertices U S [Dn], then for any (n, T )-attractor
decomposition A that is larger than D, then U does not intersect with [An]

Proof. Since A is an (n, T )-attractor decomposition of G by definition [An] forms
a trap in G.

We show our proposition by induction on the smallest number of steps in
which Audrey can force the visit to S". Tt is true that all vertices u in G with a
zero-step reachability strategy to S” have u ¢ [An]. It is trivial that u ¢ [Dn], and
since A is larger than D, it follows.

We show that if all vertices u where Audrey has an at-most i-step reachability
strategy to visit S” are such that u ¢ [.An], then so do all vertices v where Audrey
has an i + 1-step reachability strategy have u ¢ [An].

Consider vertices with an i + 1-step Audrey strategy to visit S”. For all such
u € U with an i + 1-step strategy, Audrey can ensure a visit to a vertex v with an
at most i-step Audrey strategy to S”. For such v, we know v ¢ [An] by induction.

If Audrey can visit v from u, since v ¢ [An], the subgame formed by [.An]
would not be a trap, and hence u ¢ [An]. O

Lemma 7.2.7. For an (n,d)-small parity game G, a tree T and a node n in T
whose level is at least as large as d, the procedure AAD(n,G) in Algom'thm@ takes

at most O(md) time before modifying the decomposition.

Proof. If the current decomposition during a call of the procedure with node 7 is
already an (7, T)-attractor decomposition, then this subcall takes at most time
O(md) time to check if our decomposition is an attractor decomposition. The crux
of our argument boils down to showing that we spend at most O(md) time before
modifying the decomposition D such that it increases.

We call a recursive subcall AAD(n, G) trivial if it is made to an empty subset
of vertices. We assume that there are no trivial subcalls made by the algorithm. This
can be assumed if the decomposition is maintained as a labelling by the algorithm.
In fact, we store for each vertex of the game an element of the leafy tree of T.
The algorithm, instead of iterating through all the children of the tree, only makes
a recursive call at a node n when there is some vertex all which has a labelling

corresponding to a descendant of 7.
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We address two things; in a non-trivial subcall, the amount of work done
outside this recursive call is at most O(md), and secondly, at most O(md) time
passes before some modification is made to the underlying decomposition.

The fact that the algorithm outside of the recursive calls takes time O(md)
is because the algorithm either computes an attractor to a set, performs basic set
operations, or calls the Move subroutine. Computing attractors itself takes time
at most O(m), but since we store decompositions as labellings, accessing a subset
of vertices takes time O(md), and so does performing the Move subroutine, thus
contributing to the runtime claimed above.

Now, we show that not too much time is spent between two modifications
to the decomposition. If, at the beginning of the procedure, the decomposition D is
not already an attractor decomposition, then we know that one of the following is

true.

e if 5(v) = v and there is a no one-step strategy for Steven to visit a vertex u
such that §(u) < ’yS or

o if 5(v) = 2 where z = 4" or 78, then there is an Audrey reachability strategy
from u to {v | 6(v) > x}.

Let v be the smallest vertex with such a §. We argue that we make at most nd
many (non-trivial) recursive subcalls in a row, taking a total time of O(md) before
modifying the decomposition D that results in changing the value of the decompo-
sition labelling of v. This is true, since for some =, a descendant of n, 6(v) =y € T
or 6(v) = 'yT or 6(v) = 'yS. No modification of the decomposition is made until the
recursive call is made at node v due to the minimality of v. This ensures that all re-
cursive calls made at node 7’ that are not to an ancestor of « terminate ‘quickly’, due
to all the vertices already forming a (’y', T )-attractor decomposition. The total time
taken is bounded by O(md), as each non-trivial recursive subcall made corresponds
to a disjoint set of vertices that already form an attractor decomposition. The sum
of the time taken to check that the decomposition, when restricted to these vertices,

actually forms an attractor decomposition is bounded above by O(md). O

7.3 Discussion

Our algorithm runs in time that is linear in the size of the input tree. Hence,
this algorithm performs better asymptotically when the input parity games have
attractor decompositions whose tree has size that is comparable to the number

of vertices in the parity game. Two such scenarios can be imagined where the
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tree of attractor decomposition is significantly smaller than the [Jurdzinski-Lazic|

required to solve the game. If the parity game has a small (or large)
Strahler number, we have demonstrated in Chapter [5 that the trees required to solve

them are polynomial in the size of the game. Another promising case is where the
attractor decomposition tree is small because most vertices are in the attractor sets
corresponding to the attractor decomposition. In such cases, although the number
of vertices in the underlying game is large, the trees required to solve them might
be much smaller.

If we are to solve arbitrarily large parity games, we suffer from several pitfalls
of progress measure algorithms. If the game is winning for Audrey from everywhere
and we run our algorithm, which computes the attractor decomposition for Steven,
then our algorithm exhaustively rules out all Steven decompositions before conclud-
ing that the game is losing for Steven. Such instances, which exhibit the worst-case
complexity are caused by the lack of a symmetric treatment of the players in the
algorithm. In the next chapter, we produce an algorithm that is recursive and
attractor-based and also ensures a symmetric treatment of the players. We rely
heavily on the techniques developed in this chapter to develop our new algorithm.
Our symmetric algorithms follow the same tree of recursive calls as several preexist-
ing symmetric attractor based algorithms, but with a square root of their worst-case
complexity. Consequently, our algorithm can be seen as an enhancement to these

algorithms, which ultimately leads to an improvement in their runtimes.
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Chapter 8

Symmetric attractor-based

algorithm

Among the first algorithms to solve parity games were symmetric attractor-based
algorithms. Based on the algorithm of McNaughton [McN93| to solve Muller games,
Zielonka [Zie98] proposed an algorithm to solve parity games in his influential work.
The runtime complexity of the McNaughton-Zielonka algorithm was O(nd), for an
(n, d)-small parity game. Although there are currently several algorithms that boast
a better worst-case runtime complexity, this algorithm remains among the fastest
in practice [FL0Y, [LPSW22, [FJAK19].

We propose a new algorithm that is a symmetric attractor-based algorithm
for solving parity games. Ours can be seen as a technique to enhance other symmet-
ric attractor-based algorithms, to bring their theoretical complexities close to the
state of the art. We focus on illustrating this technique using the example of the clas-
sic McNaughton-Zielonka algorithm [Zie98| and we also argue that it is applicable
to other symmetric attractor-based algorithms that were inspired by McNaughton-
Zielonka [BDM18|, [Par19 LPSW22| [JMT22| LBD20]. McNaughton-Zielonka and its
variants have exhibited excellent performance in practice, significantly beating other
classes of algorithms on standard benchmarks [Keil5, vD18, [BDM18| BDM+21]. On
the other hand, their worst-case asymptotic running time is typically worse than that
of asymmetric algorithms [Jur00, CJK 22, TTL17, DJT20]. More specifically, while
the running time of state-of-the-art asymmetric algorithms is dominated by the size
of an underlying universal tree [JL17, [DJT20], it is the square of the size of a uni-
versal tree for symmetric algorithms [JMT22, LPSW22]. We reduce the worst-case
running time of symmetric attractor-based algorithms to match the linear depen-

dence on the size of a universal tree enjoyed by asymmetric algorithms.
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Our algorithm is based on making better use of the structural information
obtained from earlier recursive calls. This significantly reduces the worst-case over-
all size of the tree of recursive calls of the algorithm. While existing symmetric
attractor-based algorithms are typically computing just the winning sets or posi-
tional winning strategies, we propose to enhance them to explicitly record decom-
positions, which are finely structured witnesses of winning strategies introduced in
the previous chapters. Moreover, we show how decompositions for both players ob-
tained from recursive calls on subgames can be meaningfully used to reduce the sizes
of subgames on which further recursive calls are made, even if their key properties
are damaged by the removal of some vertices from subgames on which they were
computed. In contrast, other symmetric attractor-based algorithms are wasteful by
routinely discarding witnesses for one of the players that are computed in recur-
sive calls; in the worst case, this results in repeatedly solving large subgames from
scratch.

Our technique is robust and applies to both the classic exponential-time
McNaughton-Zielonka algorithm [Zie98] and its more recent quasi-polynomial vari-
ants [Parl9, [JMT22, LPSW22]. We are also confident that it is applicable to other
symmetric attractor-based algorithms, such as priority promotion [BDMI18]|, which
are variants of the McNaughton-Zielonka algorithm. Such algorithms can be in-
terpreted as the enhancements by ad hoc heuristics to be robust to the wasteful
behaviour described above. Ours is a more principled approach, in which decompo-
sitions of subgames computed in previous recursive calls are never discarded and are
instead used in a systematic manner to speed up and reduce the number of further

recursive calls.

8.1 An exponential-time symmetric algorithm

Although McNaughton-Zielonka algorithm outperforms several other algorithms in
practice, there are several families of games on which it takes exponential time.
Some examples are those found in the paper of Friedmann [Frill], Gazda and
Willemse [GW13], van Dijk [vD18], Benerecetti et al [BDM20]. We add to this
list a family of games on which McNaughton-Zielonka makes exponentially many
recursive calls. We focus our attention in this section to this family and use it as a
running example to highlight the exponential complexity of McNaughton-Zielonka,
to motivate the idea behind our technique, and to show how our technique leads to
significant improvement.

We recall the classic recursive algorithm of McNaughton and Zielonka [McN93),
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Zie98|. However, this is not similar to a description of the McNaughton-Zielonka
algorithm that one would find in the wild. It is enhanced to produce attractor de-
compositions for both of the players and to return the winning sets for Steven and
Audrey. The work of Jurdziriski and Morvan [JM20, [JMT22] also contains such an
enhanced version of the McNaughton-Zielonka algorithm that produces attractor
decompositions. We reproduce it with modifications in Algorithm [7] to align with

the current definition of attractor decompositions.

The algorithm, on an (n,h)-small parity game G, uses two [complete n-ary|

treed of even level and odd level A and h + 1, which dictates its recursive calls. The
algorithm uses two mutually recursive calls MCNZ-EVEN and McNZ-ObDD, which
takes as input a game G, the highest priority A, and two nodes € and w from the two
complete trees 79 and 75", The node ¢ belongs to Steven’s n-ary tree given
and the node w to Audrey’s n-ary tree 79 The respective levels of these nodes e
and w in the tree are h and h + 1.

The trees 7" and T°% are used to construct the (e,TEven)—attractor

Odd)—attractor decomposition for Audrey. We

decomposition for Steven and (w, T
assume that the algorithm stores the attractor decompositions Dgyen and Dpgq
computed in previous recursive calls. As in the previous chapter, these attractor
decompositions are stored as a partition of the set of vertices, accessed using the
nodes of the complete trees. These disjoint parts are referred to as Hpyen, Tiven and
Shven for each node € in the n-ary Steven’s tree T and Hoads Toaas and SSaa,
for w in Audrey’s tree 79U We exclusively use € and its variants for Steven’s trees
and w and its variants for Audrey’s trees to avoid confusion. In this section, the
tree is also assumed to be N-labelled, and we write (z1,...,z,) ® y for the tuple

(x1,...,xp,y) obtained by concatenating (z1,...,z,) with (y). Recall that if a tree

is assumed to have a|natural labelling| (labelled using N\ {0}), we then represent the
th . :
i child of a node 1 by n © 7.

We start by describing the McNaughton-Zielonka algorithm modified to pro-
Odd
)

duce an (e, TEven)—attractor decomposition for Steven and an (w,7T -attractor
decomposition for Audrey. The algorithm runs iteratively until an attractor decom-
position is found. In iteration i, the Steven attractor 7T} to the set of vertices of
highest even priority H; is found, and removed from the current game G;. Then,
Audrey’s version of the procedure is called on the subgame g;, obtained from G;
after the removal of T;. Once the corresponding winning set U,-' of Audrey in Q;
is computed, the (w ® i,TOdd)—decompOSition for Audrey is found except for the
side-attractor set SQ4q. To identify this set, Audrey’s attractor SZ'- to this Audrey-

winning dominion Ui' is computed and the statement Sg% «— A; \ UZ-' in line
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declares the side attractor set for Audrey. The next subgame G,,; is obtained by
removing S; from G;.

The above process is repeated until the Audrey’s attractor S; to her winning
set U; does not contain any vertices other than U;. If this is the case, we know that
Steven can win from all vertices of G;,; computed, and the statements Hpye, < H;
and Thyen <« 13 \ H; fix the highest priority set and top attractor set, respectively,
in lines and In the Steven recursive call, we only identify the partitions
Hvens Thven for Steven along with the parts Sgdeé for Audrey. The other parts of

the partition are filled out by recursive calls of the procedure. We only describe the

Algorithm 7 McNaughton and Zielonka enhanced to produce attractor decompo-
sitions of both players

Even

Input: A parity games G with highest priority A and nodes € in the even tree 7
whose even level is h and w in the odd tree T2 whose odd level is h + 1.
Output: The set of winning vertices for Steven.

1: procedure MCNZ-EVEN(G, h,w, €)

2 if G = @ then

3 return @

4 end if

5: g1 «— g, 1=0

6 repeat

7 1e—1+1

8 H «n ' (h)nG;

9: T; « Steven attractor to H; in G;
10: G (Gi\T)

11: U; «McNZ-ODpD(Gi,h —1,6,w O i)
12: S£ < Audrey attractor to Ui' in G;
13: Soad < Si\ U

14: Gir1 < Gi\ S;

15: until Sgdoé =Q

16: Hpyen < H;

17: Tlgven <1 \ Hz
18: return V(G;,;)
19: end procedure

recursive calls at the even levels as the other recursive for odd levels can be described
similarly. The correctness of the above algorithm is well known, and we refer an
interested reader to several preexisting works [Zie98| [JPZ08, [JMT22] proving it.

In the upcoming discourse, we produce an example family of games for
which McNaughton-Zielonka’s algorithm exhibits exponential time complexity (Sec-
tion . Subsequently, we introduce our enhancement in Algorithm |8, which

has a worst-case running time is the square root of the worst-case running time of
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McNaughton-Zielonka algorithm (Section|8.1.2). By proving polynomial-time termi-
nation (Section [8.1.3) of our algorithms for these specific game families, we claim a
significant advantage over the McNaughton-Zielonka approach, which, when applied

to these identical game sets, exhibits exponential time complexity.

8.1.1 An exponential family of games for McNaughton-Zielonka

Consider the following family of games H;, for each k. The game Hy contains of 5k
vertices, with the highest priority as k 4+ 2. For all ¢ < k, the vertex set contains 5
vertices and they are {u;, v;, w;, z;,vy;}. We call this set L; and refer to it as the it
layer of the game. The priority of w; is i4+2 and all the other nodes in L; have priority
i+ 1. For even values of i, Audrey owns v;, y; and Steven owns u;, z;. For odd values
of 4, this is swapped. The vertex w; is owned by Steven for all . The edges within
a layer L; are: {(ug,v;), (vi, wq), (vi, %), (w5, w;), (wi, v3), (24,94, (Yi, ©3)}. Between

layers,
e for each i < k — 2, there is an edge (u;, y;1+2);
e for each 1 < i < k, there are edges (v;,v;_1) and (y;, yi—1)-

An example of the game H, is shown in Figure [8.1) where the square vertices are
owned by Steven and the pentagon ones by Audrey. The odd layers in the game
are winning for Steven, whereas the even layers are winning for Audrey. A strategy
for each player is to move to the vertex to the left. More formally, for each player,
including all their edges (v;, u;) and (y;, z;) (along with all the edges of the opponent

player) turns out to be a winning strategy in their respective dominions.

Figure 8.1: The game H4

Lemma 8.1.1. For the family of games H,, for n = 1 Algorithm @ makes ©(2")

recursive calls.
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We first highlight the idea behind the exponential complexity of McNaughton-
Zielonka. For an odd value k, the procedure MCNZ-EVEN on H;, makes two McNZ-
ODD calls and these are made on the subgames Hj,_; U{uy, v, yr} and Hy_1U{xy, yr}
in succession. Notice that these games have a large intersection, which includes the
subgame H;._; and the vertex yy, leading to an exponential complexity of this easy-
to-describe algorithm. The first recursive call Hj_1 U {ug, v, yi} indeed identifies
the winning sets for this subgame for both players. Moreover, for Steven, the strate-
gies that are winning in this subgame are in fact winning in H; too. Unfortunately,

the next recursive call promptly discards this information.

Proof of Lemma|8.1.1. Without loss of generality, we assume that n is even. The
same claims hold for odd n. Consider the important families of subgames that we

see in our recursive calls:
L Bn = ,Hn—l U {unavn} = Hn \ {wn7$n>yn}
b Cn = Hn—l U {umvmxn} = Hn \ {wmxn}

We will argue that each of these families take exponential time to solve due to the

structure of the game.

Proposition 8.1.2. The number of recursive calls needed to solve C,, is the number
of recursive calls needed to solve B,,. Moreover, the number of recursive calls to

solve either subgame using Algorithmlj is 2".

Proof. We prove the above proposition by proving the following claim. If we denote
the number of recursive calls to solve C,, and B,, with C'(n) and B(n) respectively,
then we also have the following simultaneous recurrence relation C(n) = B(n) =
C(n—1)+ B(n—1) of the claim.

Claim 1. McNZ-EVEN on the subgame B,, as well as C,, makes two recursive calls
of McNZ-ObDD on B,,_1 and then C,,_1.

The top priority in both games is n+ 1. The Steven attractor to the vertices
of priority n + 1 is

b {Un,’Un, Yn, wn—lvxn—l} in Cn and
b {mrmyn,wn—la xn—l} in Bn

The complement of the Audrey attractor to n + 1 in both these games is exactly

C,—1 and their first recursive call for both the games are the same.
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This recursive call returns only {u,_1,v,-1} as the winning sets for Steven
in C,,_1. The Steven attractor to {u,_1,vp_1} is {ty—_1,vn_1,W,—_1} in both C, and
B,.

The complement of this Steven attractor set is

Bn—l U {unvvna yn} in Cn and

Bn—l U {:L'na yn} in Bn

The top priorities in the above subgames are

{tn, Vns Y, wp_1} in C,,, with Audrey’s attractor being {u,, U, Yn, Wp_1, Tn_1}

and

{2, Yn, wn_1} in B,,, with Audrey’s attractor being {x,,, Yn, Wn—1, Tp_1}-
Their complements in the respective games is B,,_;. O

We only need to make the following statement to conclude our proof.

Claim 2. McNZ-EVEN on the subgame H,, makes two recursive calls of MCNZ-
ODD to the subgames C,,—1 and B,_1.

In fact, the complement of the Steven attractor to the top priority of H,, is
the set C,, which is the first recursive call. The Audrey winning set in C, is exactly
the set {u,,v,}. The Audrey attractor to this two-element set in the entire game is

{tp, vy, w,}. Now we are left with the subgame B,,, thus proving our claim. ]

8.1.2 McNaughton-Zielonka algorithm with memory

McNaughton-Zielonka’s wasteful behaviour in the example family of games above
prompts us to ask if there is some way we can utilise the progress we make in the first
recursive call of these symmetric algorithms to provide a head-start for the following
recursive calls. Several enhancements of McNaughton-Zielonka exist, all of which
attempt to utilise information from recursive calls. Some notable ones include the
priority promotion algorithms and its variants [BDMIS, BDM" 21| along with the
Tangle learning algorithm by van Dijk [vDI18], which all perform well in practice.
The key idea behind these algorithms was to identify quasi-dominions (which are
subgames where a player wins from all vertices if the play stays within this sub-
game) in their recursive calls and to increase these quasi-dominions obtained so far
carefully. Another approach was to remember the strategy obtained in the recursive
call. A recent work by Lapauw, Bruynooghe, and Denecker [LBD20] shows that

by remembering and modifying the strategies obtained recursively in a calculated
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manner, faster practical performances can be obtained for several benchmarks. But
all of these have worst-case exponential running time comparable to McNaughton-
Zielonka, as these heuristics do not lead to a provable increase in the worst-case
running time.

We show that our idea of enhancing an algorithm with decompositions can
be adapted to work for recursive, symmetric, attractor-based algorithms. This
turns out to reduce the worst-case runtime complexity to a square-root of the
McNaughton-Zielonka algorithm. We make use of structural information obtained
from recursive calls to significantly reduce the worst-case overall size of the tree of
recursive calls of the algorithm as compared to other symmetric attractor-based ap-
proaches. We show how witnesses for both players from recursive calls on subgames
can be meaningfully used to reduce the sizes of subgames on which further recursive
calls are made, even if their key properties are damaged by the removal of some
vertices from subgames on which they were computed. In contrast, other symmetric
attractor-based algorithms are wasteful by routinely discarding witnesses for one of
the players that are computed in recursive calls; in the worst case, this results in
repeatedly solving large subgames from scratch.

The procedure MCNZFAST-EVEN in Algorithm [§] works using decomposi-
tions Dhyen and DGgq on a subgame G. Both Audrey’s and Steven’s decompositions
are being maintained, and they both need to be modified based on the attractors
computed. To distinguish between the modification of each of these decomposi-
tions, we highlight the changes made to the Steven decomposition in blue and the
changes made to the Audrey decomposition in pink. We also observe that the high-
lighted part indicates exactly how our enhancement deviates from the attractor-
decomposition producing version of McNaughton-Zielonka (Algorithm . Indeed,
removing the highlighted parts gives us the McNaughton-Zielonka algorithm.

We assume that the algorithm takes as input an (n, h)-small parity game G,
the priority A, the nodes € in tree TV with even level h, and the node w in tree
79U Gith odd level h + 1. Tf for one of the players, the decomposition computed so
far already forms an attractor decomposition, then the algorithm stops and returns
the corresponding set, since having an attractor decomposition implies that we have
a witness of winning for that player in the current subgame. On the other hand, if
both players only have decompositions that are not attractor decompositions of the
current subset of vertices, our algorithm computes the Steven attractor to the top
priority in the subgame G;, closely mirroring the McNaughton-Zielonka algorithm
(Algorithm . However, our procedure deviates from McNaughton-Zielonka here

by modifying the part Tgye, of the Steven decomposition to update this information.
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Algorithm 8 McNaughton and Zielonka Algorithm with memory

Even

Input: A parity games G with highest priority h and nodes € in the even tree 7
whose even level is h and w in the odd tree 72 whose odd level is i + 1.
Output: The set of winning vertices for Steven.

1: procedure MCNZFAST-EVEN(G, h, €,w)
2 if Dpyen restricted to G is an attractor decomposition then
3 Set (Sgdd,V(g))
4 return V(G)
5: else if ngd restricted to G is an attractor decomposition then
6 Set (Sﬁven, V(g))
7 return @
8 else
9 G1<G;i=0
10: repeat
11: 1e—1+1
12: H, « 7 (h)NG;
13: T, «Steven attractor to H; in G;
14: R; < Tlgven \ (,Tz U Hz)
15: Movep,, .. (R;)
16: S; « T; n [ D3]
17: Set (S04, Si)
18 G; = (G0 [Dgaa])
19: U; « MCNZFAST-ODD(G;, h —1,€,w ® i)
20: S; « Audrey attractor to U; in G;.
21: R « 8834\ Si
22: Movep,,, (Ri)
23: Q’L - S; n [Dleﬂven]
24: Set (Svens @)
25: Gis1 < Gi \ S;
26: until Df,., restricted to G;41 is an attractor decomposition
27: return V(G;)
28: end if

29: end procedure
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This is done in the lines [[4] and [I5] where the set R; is first identified as the set of
vertices that are no longer in the attractor to the top priority and later the subroutine
Movep,, .. (R;) is called on such an R;. This subroutine modifies the decomposition
Dryen such that the vertices in R; are assigned to parts in the decomposition labelled
by values larger than e. The subroutine was defined in detail in the previous
chapter.

The lines highlighted in blue result in the current Steven decomposition being
modified in such a way that the top-set Thye, now contains exactly the vertices
T; \ H;, from which Steven has a reachability strategy to the set of vertices of
highest priority H; in the subgame G,.

Next, the lines highlighted in pink result in the modification of Audrey’s
decomposition. The algorithm first computes the vertices S; that are in the inter-
section of T; (the Steven attractor to H;) and [Dg%]. Steven has a strategy to
escape from S; in the subgame [D‘Sgé] using the attractor strategy in 7; and visit
an even vertex of priority h. To ensure that [Dg%] is a trap for Steven, using the
subroutine Set, the vertices in .S; are removed from the parts of the decomposition
that are contained in [DS%] and later reassigned to the parts containing vertices
in S; in Audrey’s decomposition. The vertices in S; are now reassigned instead to
the part Sg%. This subroutine Set is more nuanced, but for the moment, it is best
thought of as being reassigned to the part represented by S(“)’Sé. We provide a more
technical overview later on for Sgdeé.

In the original McNaughton-Zielonka algorithm, the next recursive call works
on the complement of the Steven attractor set T;. The complement of a Steven
attractor set forms a trap for him. However, in the next recursive call at one level
lower, our algorithm considers the subgame Q; of G; induced by [D‘Sgé]. We then
perform an odd-level recursive call by calling the procedure MCNZFAST-ODD on
Qé, which is a trap for Steven. After Audrey’s recursive call returns her winning set
UZ-' in the subgame Qé, the algorithm computes the Audrey attractor S; to the set
Ui' . Since this attractor S; is the set of vertices from which Audrey has a strategy
to reach Ui' , we adjust Audrey’s decomposition by calling the subroutine Move on
vertices R; that are in Sgdocil but not in ;. This is captured in line 22 which calls
the subroutine Move on R;, but this time for Audrey’s decomposition. Finally, the
procedure computes the set of vertices (J; in both the set S; and the set [DEVQH].
The subroutine Set is called which relocates @; to the part Skyen.

We initialise these decompositions, similar to our asymmetric algorithm, with

the smallest decomposition for both players.

Remark 5. The subroutine Set (S%, S ) takes as input a part from a decomposition
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D. Intuitively, the subroutine modifies it in such a way that all vertices in S are

now assigned to the part S%. It can be performed by the following operations:
. [D']<[D"]es
e She—ShuS

Recall that the operator © was defined in the previous chapter in page[106. The time
taken by such operations is near-linear time.
However, we remark that any subroutine that modifies the decomposition to

a decomposition D' that it is
1. at least as large as the original decomposition D,

2. at least as large as the decomposition & which has Sg = S and all other parts
in the partition £ to empty, and

3. at most as large as the smallest attractor decomposition larger than D

serves our purposes in terms of proving correctness.

Correctness and Runtime. Any function as defined in the previous chap-
ter and Set as in Remark [5| provide the required correctness and runtime that we
claim in the theorem below. We only state the following theorem, which guarantees
correctness and a quadratic improvement in the runtime, but prove it towards the

end of the chapter.

Theorem 8.1.3. Let G be a (n, h)-parity game and let € and w be nodes that have
even level and odd level h and h+1 in the two N-labelled n-ary trees T g 70
respectively. Procedure MCNZFAST-EVEN(G, h, €,w), initialised with the smallest
TEven—decomposition of G for Steven and the smallest TOdd—decomposition of G for

Audrey, terminates with the smallest Steven given

-attractor decomposition for the
Steven dominion and the smallest Audrey 79U attractor decomposition for the Au-

drey dominon in G.

The following lemma highlights the improved runtime of our algorithm by a
quadratic improvement we gain compared to McNaughton-Zielonka, and comparable

to the small progress measure algorithm by Jurdziniski [Jur00].

Lemma 8.1.4. For a (n, h)-small parity game G, the number of recursive calls by

either MCNZFAST-EVEN or MCNZFAST-ODD is at most the product of a polyno-
- n\I7/2]

mial in n and O(E) .
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Figure 8.2: The game F4

8.1.3 Analysis on example families of games

We will demonstrate the algorithm on two examples in this subsection to understand
the efficiency of our algorithm. These two examples are going to be the family of
games H;, introduced in Section [8.1] and the family of games, we will call Fj,, which
was introduced by Friedmann [Frill].

We recall that in his work, Friedmann provided a family of games on which
McNaughton-Zielonka takes exponential time [Frill]. We will call this family of
examples Fj, for k € N.

We will again describe this game F,, in ‘layers’ as done for the previous hard
example. The game F,, consists of n + 1 layers Lg,, Lq,...,L,, each consisting of

at most 5 vertices.
e [ consists of 3 vertices ag, by and cy.
e Forie€{l,...,n—1}, we define L; to be {a;,b;,¢;,d;,e;}.
e Finally, L,, = {d,,e,}.

The priorities of the vertices a;, b;, and ¢; are 37 + 3, 37 + 4, and 3i + 5 re-
spectively. The priorities of d; and e; are both 2 if 7 is odd and 1 if ¢ is even.
The ownership in a layer alternates. Vertices a;,c; and e; are owned by Audrey
when ¢ is even and owned by Steven otherwise. The vertices b; and d; are owned
by Audrey when 4 is odd and by Steven otherwise. The edges within a layer
are (a;,b;), (b;,a;), (c;,b;), (d;,¢;), (d;,e;), and (e;,d;). Between the layers, we de-
fine the following edges (b;,bix1), (bis1,0;), (a;,dis1), (€;41,0;), and (¢;,d;v1), for
i € {0,...,n — 1}. These edges however are defined only when both the incoming
and outgoing vertices corresponding to it exist. The game F,, is won by Audrey for

even values of n and is won by Steven otherwise. We have drawn F in Figure [8.2
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and this game is won by Audrey. The winning strategy for the player that wins the
game is to either ‘go left’ or ‘go up’.

The exponential behaviour is due to the careless disposal of information
obtained in recursive calls. In the next two lemmas, we show that our algorithm

solves Friedmann games as well as our family of games H, in polynomial time.

Lemma 8.1.5. Algorithm[8, when initialised with the trivial decomposition for both

players, solves the family of games H,, in time that is polynomial in n.

Lemma 8.1.6. Algorithm[8, when initialised with the trivial decomposition for both
players, solves the Friedmann family of games F,, [Erilll] in time that is polynomial

mn.

The key idea behind both of these proofs is that the algorithm records a
sufficient amount of progress by maintaining a decomposition in its preliminary
recursive calls. In future recursive calls, when this decomposition is our starting
point, the algorithm does at most polynomial amount of processing in the above

family of games. This phenomenon is highlighted in the scenarios listed below.

1. Steven or Audrey already has a winning strategy in the form of an attractor

decomposition from a previous recursive call (as in the proof of Lemma

as well as Lemma [8.1.6)).

2. Audrey’s decomposition is robust enough to conclude quickly that the game

is losing for Audrey, and therefore winning for Steven (as in the proofs of

Lemma and Lemma [8.1.6)).

3. Subsequent recursive calls are made on significantly smaller subgames due to
the structure of the available decompositions. Some of these recursive calls
might even turn out to be empty (as in the proof of Lemma [8.1.5)).

The exact details of these proof requires us to identify specific subgames that the
recursive calls are made on and the details of the proof are available below. Our
proofs, which show that these family of games are solvable in polynomial time, rely
on induction. Thus, in turn, hinges on the regularity of the subgames in recursive
calls.

While these proofs are tailored to exploit the regular structures within the
subgames and establish the polynomial termination of these games, it is essential to
note that our algorithm’s strength transcends being a mere tailored technique reliant

on game-specific properties. We underscore this by showing that our algorithm’s

129



efficiency is not confined to a specialized context; indeed, it operates with a worst-
case time complexity that is a square root of that of the McNaughton-Zielonka

algorithm.

Fast termination of Algorithm (8| on games #, and F,

For the proofs, we drop the subscripts Even and Odd from decompositions and
their respective sets to simplify notation. The decompositions will be identified by
their node in the tree, € denoting nodes in the Steven tree and w denoting nodes in

Audrey’s tree.

Proof of fast termination of Algorithm (8| on the family of games #H,, We
prove this by showing that the decomposition maintained after one recursive call

ensures polynomial termination of the other recursive call.

Proof (sketch) of Lemma[8.1.5 Recall the families of subgames from the proof of
Lemma showing exponential runtime of the games defined where for all k, we
define C;, = Hy. \ {wp, 1}
We will find the number of recursive calls to solve C41 in this proof instead.
This suffices because the complement of the attractor to the top priority in Cp,q as
well as Hy, remain the same for these two games on running the two algorithms.
If T'(k) denotes the time taken to solve Ci41, then we show that T satisfies

the recurrence relation for a fixed constant ¢
T(k+1)<T(k)+c- k.

From the above recurrence, we can show that T'(k + 1) is bounded by a polynomial.
Now all that remains is to show that the algorithm on Cp,y in fact produces the

above recurrence. Without loss of generality, assume k is even.

First iteration. The vertices of priority k£ + 2 in Ci41 are exactly the ver-
tices in the set {up41, Vpt1, Yre1, Wit The algorithm computes the Steven attractor
to this set of vertices as it is the set of vertices that have the highest even priority.
The Steven attractor to it consists of the above set along with vertex x;. These
vertices are added to H and T° respectively, where € is the root of the Steven tree.
The complement of these vertices is exactly C,. A recursive call is then made to
the rest of the game C;, with decompositions that are the smallest decompositions
(with respect to the order introduced on the decompositions by the decomposition

labellings, as defined in Chapter [7)) for both players, from where we get the first
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Figure 8.3: The game H,4 recalled

term of our recurrence relation. The recursive sub call returns the attractor decom-
positions of Cy.

Note that the subgame consisting exactly of the vertices {uy, vy} is winning
for Audrey in Cg, while the rest are winning for Steven. Therefore, there is an
attractor decomposition of the game Cj \ {ug,vr} = Hp-1 U {yx}. This game is
winning for Steven and therefore has an attractor decomposition for Steven. The
strategy for Steven is to use the same edges from the odd layers, which was winning
for Steven in Hy. For even layers, Steven’s strategy in this subgame would be to
use the edges (u;,y;41) and (x;, w;) for even values of 1.

We show that the algorithm returns the smallest attractor decomposition of
the subgame Hj;_; U {y;}. We will now define the attractor decomposition of the
subgame Hj_1 U {y;}, which will be returned by our first recursive call.

To avoid cumbersome notation to define our attractor decomposition for the
subgame H;_1 U {y,}, we define the attractor decomposition of H,_; U {y,} for
any even n, and denote it using A;,. The tree with respect to which the attractor
decomposition Aj;, and A is defined is not a complete tree; however, we remark
that this tree can be embedded into the complete tree, and therefore we can extend
the decomposition into one with respect to a complete tree. We will show how this
decomposition can be obtained in a step-by-step manner.

The attractor decomposition A;, is defined as
I
<®7 o, (Dn—27 <®7 D, (Rn—l) ) ®>) 9 ®>

where D),_, is an (wy, T )-decomposition and R,_; is an (wsy, T )-decomposition.
We define these decompositions inductively as follows. The (wy, T )-decomposition

D;I_g is the same as another decomposition D,, but with its side-set defined as
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Sﬁl = {Yn+1, Un+1}. We pictorially represent A, for better readability.

==

=S| =
=

Rn—l

We now define the attractor decompositions D,,_s and R,,_1 recursively. We define

D,, and R,,_; inductively as drawn below. We say D,, is the decomposition

<®7 @, (({unavn} 9, ®> ’ ({xn’yn} D, (Dn—Q) ) ®>)> :

For improved readability, we draw the decomposition as follows.

0
0

Un VUp Jwy Tn Yn

@ Dn—2

We define R,,_1 as

<{wn—1} ; {zn—la Un—1,Up—-1, yn—l} 5 (Rn—S) ) ®>

and again draw this decomposition as follows.

Wn—1
Tpn—1 Up—1
Un—3 Yn—1

Rn—B

Once Aj,_; is returned, the Audrey attractor is computed to the two-vertex

winning set {uy, vy} from before, whose Audrey attractor in the subgame Cj,; turns
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out to contain only the extra vertex wy. Now, the respective Set and Move oper-
ations are performed, expelling the vertex wj from 7°¢, into S of the even de-
composition maintained by the algorithm, thus completing the first iteration of the

outermost recursive call.

Second iteration. In the second iteration, there are no ‘extra vertices’
in the attractor to the set of top even priority vertices in the current subgame
considered. This is because now the only top even priority vertices are wug41, Vg1
and y.4+1. The complement of it is the subgame H,U{x}, y;.}. Therefore, its attractor
turns out to be empty, so the vertex xj, which was previously in 7° instead, is now
assigned to S'. We now argue that the odd-level recursive calls made terminate
after only polynomial work. We do this by closely analysing what the odd recursive
call does in each of these recursive calls.

For each child ¢; of €, there is an odd recursive call with the root of Audrey’s

tree wy and the Steven tree ¢;.

e On observing the labelling maintained by Steven after the previous recursive
call, we can conclude that for €;, the number of vertices in the recursive call

itself is constant.

e For €9, all the vertices in the scope already form an attractor decomposition,

so the work done is polynomial.

e This leaves €3, but the set of vertices in the scope turns out to be exactly the
subgame Of_1, which consists of only the odd layers of the game H;_; (defined

later), for which the algorithm takes polynomial time on this subgame from

Proposition below.
O]

We will call the subgame of H,, restricted to the odd layers O,, and the even
layers &,,. Let us prove the following proposition, which will help us to arrive at a
recurrence relation for the above lemma.

The decomposition R;Z in the following lemma is defined similarly to R,
defined previously, but with the top-set T° containing the vertex u,,_; additionally.

The proof is by a simple induction.

Proposition 8.1.7. For the family of games O,, such that n is odd, the procedure
McNZFAST-EVEN solves this family in polynomial time where the initial decom-
position for Steven is R;l and the initial decomposition for Audrey is the smallest

decomposition of O,,.
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Proof sketch. When n = 3, the statement is trivial.

For larger n, the algorithm first computes the Steven attractor {w,,, z,,} to the
set of vertices with the highest priority {w,}. Following this, an odd recursive call
is made, which computes an Audrey attractor to set of vertices {u,, v,,y,}, which
have the highest priority. When removing the set of vertices first in the Audrey
attractor and then in the Steven attractor, we are left with a similar substructure
of decomposition with vertices of O,,_5. Since only linear time passes before making

a recursive call to a game O,,_1, the time taken in is polynomial. O

Proof of fast termination of the family F,,. We consider the family of graphs
Frn- The crux of the argument is that we identify the decomposition that is obtained
after the recursive call for this family and show that starting from this decomposition
takes only polynomial time.

Let us try to answer a simple question: What does the smallest attractor
decomposition of F,, look like?

Due to the symmetric nature of the family and the algorithm, it is enough to
answer this question for an even-valued n. The analysis for odd-valued n is similar.

We denote by A, the attractor decomposition defined below for Audrey of
the game F,,, where w is the root of Audrey’s tree at level 3n + 3. We will define A,
inductively, but before we do that we describe the tree 7 where A; is an (w, T )-
attractor decomposition. This is such that the root has an odd level of 3n + 3. This
is because the highest priority in the game F,, is 3n + 4. Now, we describe the tree

of odd level 3n + 3, and say 73 is the tree with one leaf of odd level 3 and written

as the jnaturally labelled tree

Tan+s = <(1> ())7 (21 ((17 ((177571—3)))))) .

Henceforth, we assume that we refer to (w, 73,4+3)-decompositions, for the tree cor-
responding to one defined above.

If n = 2, then A, is the (w, T3,43)-attractor decomposition consisting of
HY = {b;}, T” = {ay,ds,e3} and S“ = {c1,dy, e1, a0, by, co}-

For n > 2 and even valued n, we have the attractor decomposition A;, defined

as follows.

e For the first child w; of w: H*' = {b,_1}, T' = {ap-1,dn,e,} and S“! =

{Cn—lv dn—17 Ap—-2, Cn—2}'

e Let w' be the first descendant of wy at level 3n — 3. Note that this would be
the first child of the first child of wy. If confirming to the notation of adding
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Figure 8.4: A, attractor decomposition of the game F,,

the order of children to the subscript, we would have called it w17, which

is cumbersome. Hence, we refer to it as w. However, we have for the first
! !

child of wy, denoted by wy, S“* = {b,_2,e,_1} and HY =T“ = @. Moreover

H? =T =8 =g,

e The rest of the attractor decomposition at w' is obtained by declarmg the side

attractor S of the recursively defined (w T3n+3)-decomposition A;_s to be
{bn—27 n—l}-

A visual representation of this attractor decomposition is given in Figure to aid
in understanding the proof. We call J,, the decomposition obtained from A; by
restricting to the subgame .7-"7'1 = F, \ {dn,an_1,cp—1}. This is obtained just by
deleting {d,,, a,_1,cp-1} from A;,.

The following proposition shows that if 7~ was the initial decomposition for
Algorithm |8 on the subgame ]-','1, then the algorithm takes only polynomial time to
return the winning set of F,,. Note that F,, is winning from all vertices for Steven.

and therefore the algorithm terminates with a Steven attractor decomposition for
!

Fr-
Proposition 8.1.8. For an even valued n (resp. odd), the procedure MCNZFAST-EVEN
at level 3n + 2 and 3n + 1 for Steven and Audrey, when run on the game .7:72 and
initialised with the decomposition J, for Audrey and the decomposition for Steven
is the smallest decomposition, makes at most O(n) many recursive calls that are

nonempty.

One can similarly prove a proposition similar to the above for Steven, which

we just state.

Proposition 8.1.9. For an odd valued natural number n, the symmetric proce-
dure MCNZFAST-ODD when run on the game .7-"7'1, initialised with the decomposition
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Ty for Steven (defined similarly) and the decomposition for Audrey is the smallest

decomposition, makes at most O(n) many recursive calls that are non-empty.

We first provide the proof of Lemma [8.1.6| assuming the two previous propo-

sitions, which we prove later.

Proof of Lemma[8.1.6 Similar to the proof of Friedmann showing exponential ter-
mination, the algorithm computes the Steven attractor to highest even value: 3n+2,
which turns out to exactly be the vertex c¢,,_1. This is followed by the Audrey at-
tractor to 3n + 1, which turns out to be the vertices {d,,, e,, a,_1,cn_1}. After this,
we are left with the vertices of F,,_; to work in the recursive call. Since n was even,
n — 1 is odd and F,,_; is winning for Steven.

This recursive call on F,,_; here computes the Steven decomposition of this
set of vertices and returns it. Observe that this is the attractor decomposition Aj,_;
defined earlier.

Although all vertices are winning for Steven at this level, in the recursive call
at the previous level 3n + 1 in the subgame F,, \ {¢,,_2}, the winning set for Audrey
is {d,,, n, Gp—-1,b,—1} and the winning set for Steven is F,,_1.

After computing the attractor to Audrey’s winning set {d,,, €,, @y_1,b,_1} in
the subgame F,, and removing it from the game for the next set of vertices, what
we are left to operate on is exactly ]:7'1_1. The decomposition we have at hand
restricted to these vertices is exactly the decomposition described above for F;l_l:
j,fj where @ has the level 3n. From Proposition we know that this terminates
in polynomial time.

Let T'(n) denote the time taken to solve F,, when the Audrey and Steven
decomposition are the initial Steven and Audrey decompositions possible for the

vertices of F,,, then we obtain the recursive relation:
T(n)=T(n-1)+F(n-2)+n"

where F'(n) is the time taken to solve the game with the conditions given in Propo-

sition B.1.8 O

Proof of Proposition[8.1.8 We start with the decomposition J,, for Audrey and
the smallest decomposition for Steven on the set of vertices of Fy,. To prove the
proposition, we show that the algorithm only makes O(1) many recursive calls and
at most polynomial work on the decomposition both before and after making a
recursive call on a subgame ]-'T'L_g with the initial decomposition being 7,5 and the

initial decomposition for Audrey. The above claim will show that F'(n) satisfies the
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recurrence relation F(n) = n° + F(n — 2), where F(n) is the time taken for the
algorithm on .7-'7'1 with the mentioned decompositions.

The first call is to MCNZFAST-ODD at level 3n + 3 at a node in the Audrey
tree w and level 3n + 2 for Steven with node e although the highest priority in .7-",'Z
is 3n + 1 from vertex b,,_1.

For each child w; of w, the algorithm computes the even attractor to vertices
of priority 3n+2. In each iteration, this is empty. Henceforth, to refer to the current
decomposition maintained by the algorithm, we use D to refer and reserve J for the
original one which the algorithm started with.

In the first iteration, the algorithm computes the Steven attractor to all

vertices not in [.7; 1].

e Observe that [ 7" | = {en, b,—1} and the Steven attractor to the complement

contains all the vertices of .7-",'1. So, we get an empty recursive call.
e The vertices in [ J,;' | are moved to S“ in the Audrey decomposition D”.

e The Audrey attractor to the empty set returned turns out to be empty. This

all the vertices in S“* are moved to [D;;?]

We proceed to the next iteration with the same set of vertices, but the decomposition
of Audrey is modified to include all vertices in [fo]. The algorithm is now at
the next child of w. For the next iteration, rooted at wy observe that we have
H“? = b,_; and T is the set {e,,, Ch—1,dp—1, Gp—o} While the other partitions in the
odd decomposition are the same as before in D;,.

We enumerate the changes in the next few steps.

1. We start with the sets defined as H*? = {b,_1} and T°? = {e,,, C—1, dp—1, Gp—2}
as mentioned above. However, the attractor to b,_; is the set {b,_1,e,},
and hence in the next step, 7% = {e, }. The algorithm expels the vertices
{Cn1,dn_1,an_s} to the first child of wy. Let us call this wy. We have H“}'2 =
{cn_2}, given t,hat it has priority 3n — 1. The rest of the vertices {d,_1,a,_2}

W
are now at 1T 2.

2. An Steven recursive call is again made at level 3n to all vertices other than
{b,,—1,e,}, but since there are no vertices of that priority, this soon makes
an Audrey recursive call at level 3n — 1. In this Audrey recursive call, is at
Audrey’s node w'z. In this recursive call, the Audrey attractor is computed to
H*? = {cn—2}, which is just itself. Therefore, the rest of the items are moved
to the first child of w.
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3. Finally, another Steven recursive call is made; however, this only triggers an
Audrey recursive call at level 3n — 3. We observe that at this level of the
algorithm, we are only left with the vertices of ]-"T'L_Q and the decomposition
restricted to Dj,_o. We see that there is not much change in the Steven decom-
position and restricted to this level, the Steven decomposition is the smallest

decomposition.

The work done above is polynomial before the recursive calls. At the end of the
recursive call at level 3n — 2 for Steven and 3n — 1 for Audrey, we know that all the
vertices of F,_ along with {b,_2,€,_1,d,_1,0n_2,Cpn_2} are in the part Sw’ where
w' is the first descendant of wy at level 3n — 3. Instead of writing it step by step, we
conclude by saying that after 3 attractor computations for Audrey, all vertices are
mapped to the side set of level 3n + 2, and all these vertices are returned at the end
of the recursive call as winning for Steven. This gives us the required recurrence

relation: F(n) = n“+ F(n — 2) for the time taken to solve the above. O

8.2 A symmetric attractor-based algorithm

The use of quasi-polynomial universal trees in the attractor-based algorithms of
Parys [Parl9, LPSW22], as well as that of Lehtinen, Schewe and Wojtczak [LSW19,
LPSW22] was highlighted by Jurdzinski and Morvan [JM20L [JMT22]. The algo-
rithm of Jurdzinski and Morvan (Algorithm , when instantiated with specific
universal trees, produces the algorithm of Parys [Par19] or Lehtinen, Schewe, and
Wojtczak [LSW19]. A report on which universal trees correspond to which algorithm
from their work has been summarised in Chapter [2] of the thesis. Therefore, we will
deal with the more general attractor-based algorithm of Jurdzinski and Morvan.

Although symmetric attractor-based algorithms are elegant, and efficient, the
theoretical complexity of these algorithms does not match the complexity of state-
of-the-art algorithms. The Jurdzinski-Morvan algorithm takes time proportional to
the product of size of the two trees that it is instantiated with. This is in contrast
to the algorithms with state-of-the-art worst-case complexity [JL17], which takes
time that is linear in the size of the tree. In fact, Lehtinen, Parys, Schewe and
Wojtczak [LPSW22] emphasise that the complexity of quasi-polynomial attractor-
based algorithms is almost the square of the complexity of other quasi-polynomial
algorithms [JL17, FJdK+19]. In this section, we describe how our technique can be
applied to the algorithm of Jurdziriski and Morvan [JMT22], which in turn shows
that the algorithm of Parys [Parl9], as well as the algorithm of Lehtinen, Schewe
and Wojtczak [LSW19L LPSW22] would benefit from our treatment.

138



Much like the approach adopted by Jurdziniski and Morvan, where the recur-
sive calls of the McNaughton-Zielonka algorithm were generalised to be dictated by
two arbitrary trees, Algorithm [9) which generalises the decomposition-using version
of McNaughton-Zielonka algorithm (Algorithm , also dictates its recursive calls
within the framework of two arbitrary trees. Our algorithm, which uses two arbitrary
trees 70 and ’TEven, contains two mutually recursive procedures UNIV-EVEN-FAST
and UNIvV-ODD-FAST. These procedures take as input a game G, the highest priority
h in the game, and two nodes € and w from 7O gpg TEven respectively. The nodes
€ and w have level h and h + 1 respectively in their trees for Steven’s procedure
UNIv-EVEN-FAST and vice versa for Audrey’s procedure UN1v-ODD-FAST. The
pseudocode for the Steven recursive call is given in Algorithm [9] whereas Audrey’s
is obtained by swapping the roles of the players. We emphasise that, except for the

iterative loop, this algorithm is similar to the procedure in Algorithm

Theorem F. For a parity game G and two trees 79U 4nd TEven, the procedure
UN1V-EVEN-FAST (resp. UNIV-ODD-FAST) in Algorithm@ (on page@) takes time
noW -(’)(max ( |T0dd|, |7'Even|)) to identify a set of vertices that includes all Steven
dominia of G with a TV gttractor decomposition and does not intersect with any

Audrey dominia with a 79U attractor decomposition.

The rest of the section is dedicated to the proof of the above theorem. Sim-
ilar to our proofs of correctness for the asymmetric version of the algorithm, the
proof of correctness of our algorithms extensively uses the fact that our algorithm
modifies this decomposition monotonically. The high-level arguments involved are
that we increase the Steven and Audrey decompositions at each iteration. The cor-
rectness is based on the fact that we never increase the decompositions “too much”.
The running time complexity of our algorithm is based on the fact that it does
not take “too long” before there is an increase in the value of decompositions at
least in one of our decompositions. Let Agyen and Apgq be the smallest attractor
decomposition larger than the current decompositions Dgyen and Dogq- We argue
that the decompositions satisfy the invariant that Dgyen, and Dpgq are smaller than
Agven and Apqq, respectively, at each step. We, moreover, argue that between each
increase to the decomposition, only polynomial time passes.

We emphasise that not all implementations of our algorithm would have
the claimed running time, but we can achieve this with carefully designed data
structures. One way to obtain a fast implementation would require a data structure
that stores each decomposition as a decomposition labelling. This ensures that
instead of keeping track of a partition with O (|7|) many parts, we can instead

represent each node in the tree succinctly and store the node associated to the
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Algorithm 9 A fast, symmetric, attractor-based algorithm

Even

Input: A parity games G with highest priority A and nodes € in the even tree 7
whose even level is h and w in the odd tree T2 whose odd level is h + 1.

Output: A subset of vertices of G > This subset corresponds to the winning
vertices for Steven if 75" and 7° are universal.

1: procedure UNIV-EVEN-FAST(G, h, €, w)

2 if Dpyen restricted to G is an attractor decomposition then
3 Set (Sgdd,V(g))

4 return V(G)

5: else if D44 restricted to G is an attractor decomposition then
6 Set (Séven, V(g))

7 return @

8 else

9 G1<G

10: for each w; among w1, ...,wy: children of w do
11: Hi 71 (W) NG

12: T; « Steven attractor to H; in G;

13: RZ S Tlgven \ T‘l

14: Movep,, .. (R;)

15: S; « TN [DEa]

16: Set (Sguas Si)

i Gi = (9: N [DGaal)

18: U; « UNIV-ODD-FAST(G;, h — 1, €, w;)

19: S; « Audrey attractor to Ui' in G;
20: Ry « S5iq \ S;
21: Movep,,, (Ri)
22: Q’L - Sz’ n [Dleiven]
23: Set (SEven, Qi)
24: Giv1 < Gi\ Si
25: end for
26: end ifreturn V(G,,)

27: end procedure
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leafy tree for each vertex. Since there are at most n vertices, this decomposition
labelling would have a significantly smaller representation than storing a partition
with as many parts as the size of either a quasi-polynomial or exponential sized tree.
Moreover, using such a representation, we can ensure that recursive calls are never
made on an empty set of vertices. This is achieved by only making a recursive call
at a node of the tree when there is some vertex of the game whose decomposition
labelling of this vertex is a descendant of this node.

We also argue that, in addition to making recursive subcalls, the algorithm
only computes attractors and performs the respective Set and Move subroutines.
Since these are relatively cheap operations, we are content with computing the
number of recursive calls made by the algorithm to establish its running time up to

a polynomial factor.

Lemma 8.2.1. Let G be an (n, h)-small parity game where h is even, and let g Even
and T2 be two trees of with roots € and w respectively. Let Agyen be the smallest
Steven (e, TEven)—attmctor decomposition of G and similarly Aoaq, the smallest Au-
drey (w, TOdd)—attmctor decomposition. The procedure UNIV-EVEN-FAST(G, h, €,w),
with the decomposition being the initial Steven and Audrey decomposition of G out-

puts a set of vertices W such that [Afyen] €W € V(G \ [ASadl)-

Proof. For this proof, we use the bijection between decompositions and decomposi-
tion labellings introduced in Chapter [6] and the order on decomposition introduced
in Chapter [} We lists the exact invariants required after each recursive subcall. If

the decompositions at the beginning of a recursive call satisfy
L. Dlei)ven E AEven and ngd = Agdd;

2. Steven has no strategy from any vertex in G to ensure the play proceeds to a
vertex whose corresponding decomposition labelling is strictly smaller than e

in L (TEVGH) without visiting a vertex larger than &

3. Audrey has no strategy from any vertex in G to ensure that the play proceeds
to a vertex whose Audrey decomposition-labelling is strictly smaller than w’
in L (TOdd), without visiting a vertex of with labelling W®.

4. V(g) = [D]E-Even] N [ngd]

then procedure UNIV-EVEN-FAST described in Algorithm |§| on input (G, h, e w)

terminates with decompositions Egyen and EGqq:

€ € w w
(a) gEven = AEven and gOdd = AOdd;
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(b) for each vertex v € V(G), at the end of the algorithm, either v belongs to
[ggdd] or [géven];

(c) the set of vertices returned is exactly [Egyen |-

Moreover, if the two trees are complete n-ary trees, Egyen = Afven a0d Eoaq = AOdd-
We start with two decompositions for vertices in G: Diyen and DGgq, both
smaller than the attractor decompositions Apye, and AQgq respectively. We show
that each step of the algorithm modifies the decompositions Dfye, and Dogq in an
inflationary manner whilst maintaining the invariant Diyen E Afven and Digq E
ABaa-
We first deal with the if-else-if conditions in the algorithm that determine if

the decomposition is already an attractor decomposition for either for the players.

DEven 1S an attractor decomposition of G for Steven. Any play that stays
within G is winning for Steven as the decomposition Df.e, is a witness that Steven
can win the game. So, Audrey can win if and only if the game exits the subgame of
G in the larger game. If she remains in G, she loses. If not, from Item |3|7 Steven has
a strategy to ensure that Audrey visits a vertex mapped to w¥ or larger. Therefore,
from the dual of Proposition we know that [Agdd] does not have any vertices
inG.

The algorithm moves all these vertices to S3qq. As there are no dominions
for Audrey in G, the smallest attractor decomposition larger than D&y would have
to have all vertices at a position larger than w”. This ensures ESdd E Adaq- For
each vertex v € V(G), at the end of the algorithm, all vertices v belong to [Dgut],

satisfying the second condition.

DGaq is an attractor decomposition of G for Audrey. The arguments are

similar to those above.

Both D44 and Dgy., are not attractor decompositions. Here, we show that
after the i iteration of UNIv-EVEN-FAST,

e the invariant Dpyen E Afyen and DOgq E AQaq is preserved,

e each vertex in G,,; is mapped by the current decomposition-labelling to a
position that is strictly larger than wis by the Audrey decomposition-labelling
obtained from Dgpgq-
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We use subscripts to identify which parts of decomposition or attractor de-
composition we are dealing with. For example, we use sets Hy, T4, and S% to refer
to the sets in the smallest attractor decomposition Agyen, and similarly Hp, T, and

Sp for the decomposition Dfye, and so on.

Movep,, ., (R;). The algorithm computes the attractor 7; to the set of ver-
tices H; containing the highest priority vertices and performs Movep,  (R;).

Since Diyen E Afvens We know that for any element 7 in the leafy tree, the
set of vertices mapped to a position smaller than 1 by the decomposition labelling
corresponding to D" is a superset of all vertices mapped to a position smaller than
n by A”. The smallest element in the even decomposition is €, and this gives us
Gn(H4UTy) € H; UT;. The operations performed involve first identifying the
set of vertices R; = Thyen \ T3 From any of these vertices in R;, Steven does not
have a strategy to reach H;, which is a superset of Hy. Therefore, we can conclude
that from the vertices in R;, Steven does not have a strategy to visit H%, and
thus none of the vertices in R; belongs to the top attractor set T in the attractor
decomposition. Since each vertex in R; is not present in T, the subroutine
increases the decomposition minimally whilst still staying below the least attractor

decomposition.

Set (Sgidd, Si). Observe that S; is the set of vertices in which Steven has a
strategy to visit the set of vertices whose labellings in D** currently at least as large
as wiS. From Proposition we can deduce that all vertices in S; at positions
(with respect to the current decomposition labelling) that are strictly smaller than
wiS have an empty intersection with [Agﬂid]. This turns out to exactly be the set of
vertices that are re-labelled after the subroutine Set (S(L;idd’ Si) with a value larger

than w;” (the side attractor node of w;).

The recursive subcall on Q; . We outsource this task to induction. First,

we observe that all the requirements are satisfied for the induction hypothesis.

1. After the recursive subcall on € and w;, the decompositions are bounded above

by the respective attractor decompositions.

2. Audrey has no strategy from any vertex in QZI» to ensure the play proceeds to a
vertex whose corresponding decomposition labelling is strictly smaller than w;
in E(TOdd) without visiting a vertex larger than wiS. This follows because of

the inductive invariants together with the arguments above for Set (Sgidd, Sl-).
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3. Steven has no strategy from any vertex in Q; to ensure that the play proceeds
to a vertex whose corresponding decomposition labelling is strictly smaller
than ¢ in E(TOdd) without visiting a vertex larger than ¢”. This is because
of the line Movep,  (R;).

4. Moreover, all vertices in g; are at parts such that either the Steven or Audrey
decomposition (labelling) maps these vertices to a point at least as large as ¢

S .
or w;" , respectively.

Movep,,,, (R;) The vertices in G; in [Dwi] are exactly Ui'. Hence, any
vertex in S“" but not in S; has no attractor strategy to S“*. Using arguments
similar to the previous Move operation, we conclude that they preserve the invariants
Disven E Abven and Dqq E Adaa-

Set (Sﬁven,Qi). S; is the Audrey attractor to the set Ui' . All vertices in
Ui', in the Steven decomposition are at a position at least as large as ¢”. This is
from the second invariant, combined with the observation that Ui' consists of exactly
those vertices in [Dgzdd] The algorithm computes (; which consists of all vertices
in [Dﬁven] that have an Audrey attractor strategy to U,-'. From Proposition
in Chapter [7], we can conclude that the decomposition can be changed such that
these vertices are now moved to a position that is at least the side attractor of e,
to the set S5. Such a change would preserve the invariants that we started with
and would ensure that our modified decomposition is still smaller than the attractor
decompositions.

Moreover, we are left exactly with vertices that are not mapped to values

larger than ¢

After the k™" iteration. After the k™" iteration, we have shown that
1. the invariant Dy, E A and Digq E A”“ is preserved, and

2. each vertex in G4q is at position that is strictly larger than wks, which is at

most wS. O

Using a similar proof, we can show the correctness stated also for Algorithm 8]

We recall our theorem and proceed to prove it below.

Theorem 8.1.3. Let G be a (n, h)-parity game and let € and w be nodes that have
even level and odd level h and h+1 in the two N-labelled n-ary trees TR gnd 70
respectively. Procedure MCNZFAST-EVEN(G, h, €,w), initialised with the smallest
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TEven—decomposition of G for Steven and the smallest TOdd—decomposition of G for
Audrey, terminates with the smallest Steven T _attractor decomposition for the
Steven dominion and the smallest Audrey T attractor decomposition for the Au-

drey dominon in G.

Proof. We claim that if the branching is not restricted, as is the case with Algo-
rithm [8] we can add an additional invariant in our previous proof which states that
every recursive call returns an attractor decomposition.

If the algorithm terminates on either the if or the else-if condition, we are
done, since one player has a decomposition and for all other players the vertices are
now at the side attractor of the other player.

If not, we need to argue that in each iteration of the for-loop of the algorithm
the right subset of vertices is passed in the recursive subcall. Observe that each
subtree of every complete n-ary tree also is a complete n-ary tree. We add this
inductive invariant, with the additional condition that the trees are n-ary complete
trees for both players. We further state that the necessary condition is the following:

For each subgame that is recursively passed, and for each tree that is cor-
responding to that level of recursion, the Audrey and Steven dominions in that
subgame must have an attractor decomposition with respect to these trees.

Indeed the complete n-ary tree fits this criterion, as they are
e large enough to fit all attractor decompositions for any subgame and
e their subtrees passed are also complete n-ary trees.

Consider the decomposition Dgye, and Dogq smaller than A and A“. We
will show that after the i iteration, the Audrey decomposition maintained is such
that all vertices in [Dgy,] form an attractor decomposition for Audrey and are the
same as the attractor decomposition Agidd.

In the first step, we compute an attractor to vertices of priority A in the
subgame G;. Observe that the dominion of Audrey [Awi] does not intersect with
this attractor. This has been argued in the previous proof using Proposition [7.2.0]
in Chapter Moreover, since [Awi] is a trap for Steven, and hence all Audrey
dominions in G; are preserved in this trap.

This recursive subcall therefore identifies this set of vertices in [Awi] and
hence also accurately computes S“?, its side attractor and removes it from G;. Since
the algorithm terminates only when we find an attractor decomposition, we also

claim that both players on termination have an decomposition. O
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Running time We show how our algorithm runs in time that is at most linear
in the size of each of the tree, a significant reduction from other attractor-based
algorithms with a quadratic dependence.

We show that procedure UNIV-EVEN-FAST (resp. UNIV-ODD-FAST) makes
(’)(nc - max ( |7-Odd [, |7'Even | )) many recursive calls for a constant c¢. The time taken
to perform each operation outside of the recursive calls is polynomial in n, thus
making the running time of this algorithm n°M . max ( 1794, |7'Even|).

Lemma 8.2.2. For an (n,h)-small parity game G, the number of recursive calls
made by procedure UNIV-EVEN-FAST (resp. UNIV-ODD-FAST) with trees 79U 4nd
TN s bounded by (’)(nC . min(|TOdd|, |TEven|)) for a constant c. The time taken

to perform each operations outside of the recursive subcalls is a polynomial in n.

Proof. Since the operations performed themselves take only polynomial time, the
running time of the algorithm is dominated, up to a polynomial factor, by the
number of recursive calls made. Therefore, the total running time would be at most
a product of a polynomial in n and A and the number of recursive calls made.

We call a recursive call trivial if it is an empty recursive call. If a subcall at
level e for Steven and w for Audrey is empty, of course, we do not make any further
recursive calls to its children, and we move to the following recursive call to next
sibling in the tree for e. This does not contribute to a large overhead because with
the help of specific data structures that keep track of the next sibling whose parts
in decomposition is non-empty, looking through all siblings could be avoided.

If a recursive subcall is non-trivial, then we see that there is a strict increase in
the decomposition of either Audrey or Steven in this recursive call as we have shown
in the proof of Lemma [8.2.1] This is due to the invariant that the decomposition
is always modified in such a way that the intersection of [DE] and [Dw] is empty.
Since we begin with a non-empty set, and we only perform monotonic operations
on the decomposition, we prove our desired bound on the running time.

We can further show an improved running time of (’)(nc - min (TOdd, TEven))
with a small modification. Let us call a recursive call accelerating if this call does
not enter the else statement of the algorithm. That is, the decomposition is already
an attractor decomposition for at least one player.

Observe that if a recursive call is non-accelerating and nontrivial, then for
both players, there is at least one vertex that is such that in any attractor decompo-
sition larger than the current decomposition, this vertex is not in the current part.
Identifying such vertices can be performed alongside the check to verify whether we

already have an attractor decomposition. Once we identify such a vertex for both
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the Audrey and Steven decomposition, we can increase it minimally at the end of
each recursive call if its position remains unchanged.

This forces an increase for both the decompositions, ensuring that our algo-
rithm terminates in time (’)(nc - min (’TOdd, 'TEVGH)). O

8.3 Outlook

A weakness of all quasi-polynomial symmetric attractor-based algorithms—including
ours—is that they may output correct winning sets, but without constructing win-
ning strategies. This is a major shortcoming in the context of synthesis, where win-
ning strategies correspond to the desired controllers. We argue that our technique,
which is based on computing decompositions that are under-approximations of the
least attractor decompositions, allows one to tackle this weakness with a modest ad-
ditional computational cost. If the algorithm terminates with a decomposition that
is not an attractor decomposition, then the decomposition obtained can serve as a
starting point to make further progress. We can then run the asymmetric algorithm
or the strategy improvement algorithm from the previous chapters for each player.
This would repeatedly modify the decomposition until an attractor decomposition
is obtained. This addition does not increase the worst-case asymptotic running time
by more than a polynomial factor.

We have illustrated that our technique, when applied to the standard McNaugh-
ton-Zielonka algorithm, yields an algorithm that can solve some hard examples [Eril]]
in polynomial time. Other families of hard examples [vD19, BDM20] should also be
analysed. Should our technique also solve them in polynomial time, delving into the
structural challenges hindering the construction of hard examples could potentially
offer fresh insights to tackle central questions in the algorithmic study of parity

games.
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Chapter 9
Rabin games and colourful trees

In this chapter, we shift our focus from parity games to Rabin games, a generalisation
of parity games. Rabin games lie at the core of reactive synthesis for w-regular or
LTL specifications, and efficient algorithms for Rabin games are of practical interest
in synthesis tools [Pnu77, BJP12].

Rabin automata already appear in McNaughton’s solution of Church’s syn-
thesis problem [Chu57, McN66] and in Rabin’s proof of the decidability of SnS
[Rab69], where it was first defined in the setting of infinite trees. To solve Church’s
synthesis problem for w-regular specifications, represented by non-deterministic Biichi
automata, there are two (polynomial-time equivalent) approaches: either reduce to
the emptiness problem for Rabin tree automata or solve a Rabin game.

As discussed earlier, Rabin conditions are also suitable specifications for gen-
eral fairness constraints [FK84]. Klarlund and Kozen [KK91] defined Rabin mea-
sures over graphs and applied them to prove termination of a program under a
general fairness constraint. Indeed, the acceptance condition that defines strong
fairness, i.e. if a given set of actions (edges) is enabled infinitely often (the source
vertex are seen infinitely often), it is taken infinitely often, is naturally expressed by
the complement of the Rabin condition, called the Streett condition.

We briefly recall the algorithms to solve Rabin games in Table discussed
in the introduction of the thesis, which details the history of such algorithms.

Calude, Jain, Khoussainov, Li and Stephan’s algorithm [CJK+22] to solve
parity games also gave fixed-parameter tractable (FPT) algorithms for Muller games
on k colours, where the dependence on the number of colours is of the order kR Tt
is known that a Rabin game with k colours can be translated into a Muller game
using at most 2k colours (but with the number of vertices increased by a factor

of k) thereby giving a direct algorithm to solve Rabin and Streett games in time
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Year Algorithm Time complexity
1988 Emerson and (’)(nk)3k
Jutla [EJ8S,
E799]
1989 Pnueli and Ros- O(nk)?’k
ner [PR8Y)
2001 Kupferman and O(mn% - k)
Vardi [KKV01]
2005 Horn [Hor05] O(mn*" - k)
2006 Pieterman  and O(mnka: - k!)
Pnueli [PP06]
2017 Calude et | O(nk’
al., [CJK"22] flm )08 #+6
2017 Jurdzinski  and | O(nm - k!2+0(1))
Lazic [JLI7]
or Fearnley et
al. [FJAK 19|

Table 9.1: Algorithms that solve Rabin games

k
proportional to (9((2’6)5'2 ) They further remarked that a more efficient way to

solve Rabin game would be to convert a Rabin game to a parity game rather than
a Muller game and solve the obtained parity game.

A Rabin game with n vertices, m edges, and k colours can be reduced to a
parity game with N = n-k! vertices, M = m-k! edges, and K = 2k+1 colours [GH82]
and to solve a Rabin game, one can instead solve this larger parity game (the priority
on these games however appear on edges). While using the algorithm proposed by
Calude et al. would exacerbate the space complexity of solving an already exponen-
tially large parity game, choosing to use state-of-the-art parity game algorithms that
improve on the space efficiency—such as the one by Jurdzinski and Lazi¢ |JL17]—

QO(KlogK)})' How-

enables the solution of Rabin games in time (’)(max {M N 2'38,
ever, it is worth noting that exponential space requirement remains a characteristic
of such solutions.

On substitution N, M, and K, the algorithm of Jurdzinski and Lazi¢ would
take time O(mn2’38(k!)3'38). However, observe that the parity game obtained from
a Rabin game is such that the number of vertices N = n - k! is much larger than
the number of colours K = 2k + 1. This results in K € o(log(N)) as k increases.
For cases where the number of vertices of the resulting parity game is much larger

than the number of priorities, say the number of colours K is o (log (IV)), Jurdziriski
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and Lazi¢’s algorithm solves these parity games obtained from Rabin games in time
(’)(nmk!2+o(1)) [JLI7, Theorem 7|. Closely matching this are the running times in
the work of Fearnley et al. [FJdKJr19] who provide, among other bounds, a quasi-
bilinear bound of (’)(M Na(N )log logN), where a is the inverse-Ackermann function.
Therefore, the algorithm with the best worst-case time complexity has at least a
(k:!)2+0(1) dependence on the factorial of k in its running time and takes a space
proportional to (nk” - k!)log(nk® - k!), which again has a k! dependence.

There is a O(nk) space algorithm by Piterman and Pnueli [PP06] which
holds the crown for the smallest space requirements so far. However, this algorithm
has a O(nk - k!) worst-case runtime (although the space complexity is claimed to
be O(nk) in their paper, the exact bit complexity one needs would include an extra
log n factor to encode each vertex and log k bits to encode each colour).

In this chapter, we provide an algorithm that breaks through the 2 + o(1)
barrier, while simultaneously using polynomial space, O(nklognlogk), improving
on Piterman and Pnueli’s algorithm as well as algorithms that convert to a parity
game, to give an FPT algorithm for Rabin games.

Our algorithm is achieved by firstly arguing that Rabin games have a colour-
ful decomposition. Colourful decompositions are further extensions of attractor
decompositions, modified to suit Rabin games. We then observe that these colour-
ful decompositions naturally correspond to colourful trees. These colourful trees
are a modified version of the pointer trees of Klarlund and Kozen. We then define
colourful universal trees, which can embed any colourful tree. Just as Piterman

and Pnueli’s result generalised ranking techniques and progress measures for parity

games, we generalise the notion of measures [KK91| and [Jurdzinski-Lazi¢ universal|
[JLI7] to obtain our algorithm.

9.1 Colourful trees and labelled colourful trees

To solve parity games, we had considered ordered trees, defined inductively as a
tuple consisting of other ordered trees. To tackle Rabin games, we branch out to
consider a closely related notion to ordered trees, which we call colourful ordered

trees.

(¢p, C)-Colourful ordered Trees. Let C be a finite set of colours and let ¢y ¢ C
be a distinct colour assigned only to the root of a tree. Informally, a (cg, C')-colourful
ordered tree is a tree whose root is assigned the unique colour ¢y, and and every

other node has a colour from C' associated to it. In addition, we expect that for
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all paths, every node along this path from the root to a leaf is assigned different
colours. However, as an exception, we allow some leaves to remain uncolored, which
we denoted by a “dummy colour” L ¢ C. Observe that our requirement about
nodes having different colours ensures that the height of the tree is bounded by at
most |C]|.

Formally, for a finite set C, we recursively define (cg, C')-colourful trees
o if C =@, wesay T is a (cg, @)-colourful tree if either

— T =(co,()), and is the tree with a single node coloured by ¢y or

— T = (co, {((L,()),...,(L,()))), and is a tree where all the children of

the root have the dummy colour L.
o if C'+ @, wesay T is (¢p, C')-colourful tree if it is either

— a (cg, @)-colourful tree rooted at cgy; or

— T = (co,{T1,...,T¢)), and for all i € {1,...,£}, either there is a colour
¢; € C and T; is a (¢;,C \ {¢;})-colourful ordered tree, or 7; = (L, ()).

Note that these ¢; need not be different from each other.

For two trees whose root colour is the same, we define concatenation similar to
ordered trees, as the tree obtained by a sequential composition of the two trees. We
define the concatenation of a (cg, Cq)-colourful tree 7; = (co, (711, e ,7'{")) and
a (cg, Cy)-colourful tree Ty = (co, (7'21, R 7'2€>) as the (cg, C; U Cy)-colourful tree
(co, <T11, e ,7’{”,7‘21, .. .,7}£>), written as Ty - T5. For a root colour ¢y, a number
¢ € N, and a (cg, C)-colourful ordered tree (cg, (7)), we denote (cg, (Te>) to be
the tree with ¢ many copies of T, (co,(T,T,...,T)). When (¢, C) is clear from

context, we simply say “colourful tree.”

Embedding colourful trees. Given a (¢, C')-colourful trees U and T, we say U
embeds T if T = (co,()), or T = (co,{T1,...,T¢)) and U = (co, (U, ..., Uy)) for
some £, m, and there is an increasing sequence of indices 1 € 41 <9 < -+- <y <M

such that U;; embeds 7; recursively.

Labelled colourful trees. In what follows, we shall additionally label colourful
trees with labels from some linearly ordered set. This is similar to the definition of
labelled ordered trees in the preliminaries, but we avoid the recursive definition, as
it is more convenient to define such labelled colourful trees as prefix-closed sets of
sequences, using the isomorphism between a (recursively defined) tree and its set of

paths.
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Let IL be a set of labels with a linear ordering <, over the set labels .. We use
C™ to denote the set obtained by adding the a new L to C, that is, ct=cCu {Ll}.
Let Lx C* be the Cartesian product of I and CF. We avoid the tuple to denote an
element of L x C, and instead write ac or ar.L for elements (a,¢),(a, L) e L x c.

An L-labelled (cg, C')-colourful tree is a finite prefix-closed set of sequences
over L x CF such that only the maximal elements of this set contain, as a term,
elements from L x {L}.

Given an element 75 € L X Ct and a sequence (7‘1,7'2, e ,Tj) of elements
with each element from L X CL, we use ® to denote concatenation to the tuple,
where we say 75 © <7’1,T2,...’7'j> = (7‘0,7'1,72, . ..Tj). We extend this notation to
sets of sequences £, by defining 79 ® L as the prefiz-closure of the set of sequences
{ (70,7'1,7'2, .. .Tj) | (7’1,7'2, . .Tj) eL}.

We say that an L-labelled (cg,C)-colourful tree £ is an L-labelling of a
(¢g, C)-colourful ordered tree T if

o if T =(co, ((L,())™)), then L is the set {{)} U{{ayL),..., (L)} for some
a1 <L ag <[, **+ <L oy, €L, or

o if T =(co,{(Ti,-..,Tm)), then L is the set

m
U a;c; © L;
=1

for some increasing values a; <y, ag <, ... Sy, in L, such that for all ¢ in
{17 R ?m}7

— T;is a (¢;, C \ {¢;})-colourful tree and L; is an L-labeling of T;,

— ¢ € C’L, and

— whenever the elements from the label set «; = «;41, the corresponding

colours ¢; # ¢j41.

Note that the root colour ¢y of the colourful tree 7 does not appear in £; instead of
tracking ¢y along with £ explicitly, we implicitly assume the root colour of the tree
L above is cg.

We refer to elements of a labelled colourful tree £ as nodes of the tree. For two
nodes nq and ny in £, we define the greatest common ancestor, written GCA(nq,ns),
as the longest common prefix of nq and ny,. We define ny as an ancestor of ngy if
ny = GCA(nq,n9). In particular, n; is a parent of ny, written n, = parent(ny), if nq
is the largest node other than ny such that ny = GCA(ny,ny); then we say that no

is a child of n;.
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Figure 9.1: A colourful tree.

The colouring of a node is defined as the last colour that occurs in the se-
quence: For the empty sequence (), we define the colour of (), denoted by colour(())
as ¢g and coIour((alcil, e ,ajcij>) = ¢;;. Furthermore, we define ColourSet as a
function from the set of nodes of a labelled colourful tree to the subset of colours
P(C uU{cy,L}). This function maps a node to the set of colours seen from the
root to that node ColourSet(n) = {colour(n') | n' = GCA(n',n)}. For example, con-
sider the colourful tree in Fig. and the node (1 ,1¢,2e,20) in it. The colour
of the node, denoted by colour({1, 1¢,2e,22)) = @ and ColourSet({1 ,1e,2e,20)) =
{o, ,#,0,@©}. Whereas for the node (1, 1¢,1e), we have colour({1 ,1¢,1e)) = @ and
ColourSet({(1,1e,10)) = {e, ,o,0}.

Ordering of nodes. We define a total linear order <, on the nodes of a fixed
colourful tree L. First, we fix some arbitrary linear order on the set C™ such that
1 is the largest element in the ordering. We compare elements by extending the
linear order <, over L. and an arbitrary fixed order < over C to a linear order over
the set L x O+ lexicographically. For two elements a;jcq, ascy in I X C’L, we define
a1c1 < agey if either o <p, a9 or a7 = a9 and ¢; < ¢o.

For two nodes ny,ny € L, we define ny <, n; if either ny is a strict prefix
of mq, or if ny is lexicographically larger than ny when viewed as sequences over
L x (Cu{l}). We remove the subscript £ when the labelled colourful tree is clear
from the context.

Pictorially, the defined ordering on a tree decreases when we go from a child
to a parent, or we go “left” in the tree, but otherwise increases. In Figure for
example here is the order with respect to < on the following nodes (1) < (1 ,1¢) <
(10) < (20,2).

Example 6. In Fig. we show a (@, { ,®,e})-colourful tree, where © represents
the dummy colour. For a fized ordering on the set of colours = < @ < o < @, a
labelling of this tree over L = {1,2} S N is the prefiz closure of the set {{1,1e,10),
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10), (2¢,1e,20)}.

9.2 Shape of a Rabin game

In this section, our aim is to understand the Rabin acceptance condition on games.
We define such acceptance conditions and provide a witness that we call a colourful
decomposition of a game in which Steven wins from all vertices. We further remark
that we can equivalently obtain a local witness called a Rabin measure for such

games.

Rabin game. Recall that a (cg, C)-colourful Rabin game G consists of
1. an arena of a (sink-free) directed graph (V, E),
2. a start vertex vg € V and

3. apartition of V into Vg and V4, the vertices of two players, Steven and Audrey,

respectively.
4. a finite set C of colours, and a special colour ¢y ¢ C', and

5. for each vertex v € V, a set of good colours G, € C U { ¢y} for v and a set

B, ¢ C of bad colours for v.

Observe that ¢y ¢ B, for any v. We call a colour ¢ in G, a good colour for
v, and a colour in B, a bad colour for v.

An infinite path in a Rabin game G satisfies the Rabin condition if there is
some colour ¢ in C' U {cp} such that ¢ is a good colour for some v seen infinitely
often along the path and c is not a bad colour for any v seen infinitely often along
the path.

Defined similar to parity games, a positional strategy o for Steven for a Rabin
game G is a subset of edges outgoing from Steven’s set of vertices Vg along with all
of Audrey’s edges in the game. We denote the graph restricted to a strategy o for
Steven by G|, and it is defined as the Rabin graph over the same vertex set with a
new edge relation that consists exactly of the edges in o.

We define the following parameters: n is the number of vertices, m is the

number of edges, and k = |C'U{cy} | is the number of colours (also called the index).
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Remark 6. Instead of Rabin condition usually described by pairs of subsets of ver-
tices associated to a colour, we talk about sets of colours associated to a vertex

instead. This is an equivalent representation in terms of size.

Colourful decomposition. We first define another extension of attractor decom-
positions, suitable for Rabin games, called colourful decompositions. These colourful
decompositions of a Rabin graph highlight a recursive structure that captures the
acceptance of all plays of Steven in a way that relates naturally to colourful trees.
Colourful decompositions generalise attractor decompositions defined in the prelim-
inaries Chapter [2| for parity games to Rabin games.

Consider a (cg, C')-colourful Rabin game G whose arena is the graph (V| E),
and whose good and bad colours are denoted by G,, and B, respectively. A (cg, C)-
colourful decomposition D of G is a recursive sub-division of vertices V' into subsets
of vertices defined as follows. If C' = @, then we say D = (V) is a (¢, C)-colourful
decomposition if V' is the Steven attractor to the set containing all vertices v such
that ¢y € G,. Else, if C' # @, then we say

D = (Aa (ClvmaDIaAl)7"')(Cja‘GaDj7Aj)>

satisfies the following conditions:

1. A is the Steven attractor in the game G to the set of vertices v such that
co € Gy;

and setting G; = V' \ A. For i € {1,...,7}, we have
2. V; is a trap for Audrey in G; in which the colour ¢; ¢ B, for all v € Vj;
3. D; is a (¢;, C \ {¢;})-colourful decomposition of the subgame G N V;;
4. A; is the Steven attractor to V; in G;;
5. Giv1 =G\ A

and we have G;,; = @.
We encourage the reader to refer to the corresponding definition of an at-
tractor decomposition of a parity game given in the preliminaries. The definitions of

attractor and trap are as defined for parity games in the preliminaries of the thesis.

Rabin measure. The Rabin measure, as with other progress measures, is based

exclusively on local properties. This renders it perfect for creating algorithms to
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solve these games. Indeed, we have a progress measure when each edge satisfies
certain conditions. We fix a (¢, C')-colourful Rabin game G with the underlying
graph (V, F) with good colours for a vertex v denoted by G, and the bad colours
B,. Let L be a linearly ordered set of labels, and let £ be a L-labelled (cg,C)-
colourful tree. We define £' = £ U {T} by adjoining an element T to £ and we
extend the ordering < to ET, by declaring T to be greater than all nodes in the
labelled colourful tree L.

Consider a map p: V — LT, We call an edge u — v consistent with respect
to p, if either p(u) is assigned to T or it satisfies conditions (G, OR G;) AND
B defined below.

e if G, , then pu(v) < p(u);
e if G|, then GCA(u(u), u(v)) = p(u) and colour(u(u)) € Gy;
e if B, then ColourSet(u(u)) N B, = @

In words, G, conveys that the measure i decreases along the edge u — v and G, says
that the measure can increase to a descendent node but only when the colour of the
node that is currently mapped to is a good colour for u. B says that none of the
colours mapped to any ancestor of u is a bad colour for it.

If the map p is clear from the context, we call an edge or a vertex consistent
without mentioning the mapping. We say that the relation and function GCA(-, T)
and colour(T) are undefined, and the condition G, or B are not satisfied when u(v)
is assigned to T and p(u) is not assigned to T.

We say that the map u is a (cg, C')-colourful Rabin measure for a game G if
for Audrey’s vertices, all edges outgoing from it are consistent, and there is at least
one edge from each Steven vertex that is consistent with respect to p.

Progress measures are values assigned to a state that denote how close this
state is to satisfying a specific property [K1a90l KK91), [Var96]. We provide a progress
measure for Rabin games, from the work of Klarlund and Kozen [KK91|, where they
also provide a similar measure for Rabin graphs (equivalent to Rabin games when
Audrey owns all vertices). Our definition of a Rabin measure combines the ideas of
Klarlund and Kozen [KK91] as well as Jurdzinski and Lazic [JL17], following recent
approaches to faster algorithms for parity games discussed extensively in Parts [I]
and [ of this thesis.

The crux of this section is Theorem below which shows the equivalence
between a Rabin measure, a colourful decomposition, and a Rabin game where

Steven can win from all vertices.
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(a) A (e,{o,e, })-colourful Rabin game G Aq Ay

(b) A (e,{e,e, })-colourful Decomposition
of G

Figure 9.2: A Rabin game and its decomposition

Theorem 9.2.1.  The following three statements are equivalent.
1. Steven wins from all vertices in a (cgy, C)-colourful Rabin graph G.
2. There is a (cg, C)-colourful decomposition D of the vertices of G.

3. There is an L-labelled (cy, C)-colourful Rabin measure for G, where no vertex

is mapped to T for some linearly ordered infinite set L.

The theorem above is proved by showing (1| = [2)) in Lemma =
in Lemma and finally (3|= (1) in Lemma

Example 7. Consider the (e, {e, o, })-colourful Rabin game in Fig. and its
(o, {e, @, })-colourful decomposition in Fig.[9.2(b), The colours that are in the good
set of each vertex are represented with a smiley face and those that are bad colours
appear with a sad face. So, the leftmost vertex in the game G as in Fig.
has the singleton set {®} as the set of good colours and the set { } as the set of bad
colours, whereas the topmost vertex in Fig. has {®} as the set of good colours
and an empty set of bad colours. Steven wins fom all vertices in this game, and a
positional strateqy is highlighted in the same figure where the edges not in the strategy
are dashed and grey. The decomposition of G in Fig. can be represented as

D= (Aa( a‘/ivplvAl)?( 7‘/27D27A2))7

where the corresponding sets of vertices are represented in the picture, Dy is a (o, @)-
decomposition of the subgame induced by V1, and Dy is a (e, {e, })decomposition by

a subgame induced by V5.
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(b) An N-labelled (e, {#,®,  })-colourful tree
(a) A (e,{e,9, })-Colourful decomposition  into which the game has a Rabin measure.
of a Rabin game G

Figure 9.3: A colourful decomposition and tree for Rabin measure

For the same game, we describe a Rabin measure p obtained from the de-
composition into the tree in Fig. where the decomposition is reproduced in
Fig. next to the game for ease of reference. The only vertex with colour e as
a good colour is assigned by p to the root (). The other vertex in A is assigned by
W to the first child of the root node in the tree (0@). All vertices in Vy are assigned
by u to one of the two nodes (1) or (1,00). The vertices in Vo are assigned to
the subtree rooted at colour e, to one of the nodes (20), or (2e,1°) or (2e,1 ,1s)
depending on the colour which is a good colour of the vertex. Finally, the vertex in
Ay \ Vs is assigned by u to the last child of the root (20).

Lemma 9.2.2. Let G be (cg, C)-colourful Rabin game where Steven wins from all

vertices, then there is a (cg, C')-colourful decomposition of G.

Proof. We construct such a decomposition, by inducting on |C'| and the number of

vertices in G.

Base case. If C = @, then the set of bad colours for each vertex is empty, that
is, for all vertices v, the set B, = @. Observe also that the attractor to the set
B consisting of vertices v in the game such that G, = {cg}, is the entire game V.
This is because the complement of a Steven Attractor is a trap for him. If therefore
there are any vertices other than the attractor to B, Audrey can ensure that the
play stays there and never visits a vertex v such that G, = {cy}. Therefore, the

(¢g, @)-colourful decomposition is just (V).
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Induction hypothesis. Let G be a (¢, C')-colourful Rabin games G where Steven
wins from everywhere and either |C'| < k or if there are strictly fewer than n vertices.

Then G has a (cg, C')-colourful decomposition
D = (A7 (Cla‘/iaplaAl) gy (Cj7V77D]7Aj)>
where ¢y € B, for all v € V, and for all v € V, if ¢y € G, then v € A.

Induction step. Suppose that |C| = k, there are n vertices, and the induction
hypothesis holds. Consider all vertices B = {v | ¢y € G,}, and let A be the Steven
attractor to the set B of vertices. The subgame G; induced by V' \ A is a trap for
Steven, and therefore he must win from any vertex in the subgame restricted to Gy .
Moreover, observe that there are no vertices v such that ¢y € G, or ¢y € B, for
v € Gy.

Fix a Steven strategy that is winning for him in G;. Consider an SCC
decomposition of the graph induced by the vertices of G; using only the strategy
edges for Steven, and all edges of Audrey. Consider a bottom SCC (an SCC from
which there is no path to other SCCs) V; of the graph induced by V' \ A. Consider
a path m such that the set of all vertices visited by 7 infinitely often is exactly V;.
This path satisfies the Rabin condition, which implies that there is some colour ¢q
such that ¢y ¢ B, for all v € V] and ¢; € G, for some v € V.

Therefore, by induction, there is a (¢1,C \ {c1})-colourful decomposition of
Vi, say D;. Let A; denote the Steven attractor to V; in the subgame G;.

Now consider the game Gy = Gy \ Ay, which has fewer vertices. We know
again that G, is a trap for Steven in G. Moreover, there are no vertices v such that
¢y € G, or ¢y € B, for v € Gy, there must be a (¢, C')-colourful decomposition.

Let this decomposition be:
D’ = (Qa (627‘/271327142) PR (ij V}vpjaAj)> .

The first set of vertices is @ by induction hypothesis since there are no vertices v

where ¢ is a good colour or a bad colour of v. We claim that
D = <A7 (Cl7 ‘/ivplv Al) ) (027 ‘/é?DQ?AQ) [ (Cj7 ‘G?Dja A]))

thus constructed from the sets defined above is a (cg, C')-colourful decomposition.
It is routine to verify that it satisfies all the properties of a decomposition by con-

struction. ]
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Figure 9.4: If C# @ andn =5

Lemma 9.2.3. Given a (cy,C) colourful Rabin graph G on which we have a
(co, C)-colourful decomposition D, there is a L-labelled (cq, C)-colourful tree with

Rabin measure for G, where no vertex is mapped to T.

Proof of Lemma9.2.5. The following is proved by induction on the size of C'. Given
a decomposition, we inductively obtain a tree and a corresponding mapping into the
tree. We modify both the tree and Rabin measure thus obtained from the recursively
defined decompositions and then merge them together. We later prove that indeed
such a mapping defined is a Rabin measure.

Before we proceed, we define the Steven attractor length. For each vertex
u, we say the Steven attractor length to a set B is t if ¢ is the smallest number of
steps such that Steven can ensure within ¢ steps he can visit a vertex in B. Observe
that all vertices in B have have attractor length 0, and the attractor length of any

vertex in the Steven attractor to B is finite and at most n — 1.

Suppose C = @. The (cy, @)-colourful decomposition D = (V). The set of ver-
tices V is exactly the Steven attractor to the set B consisting of all vertices v such
that ¢y € G,. We consider an L-labelled (cy, C')-colourful tree obtained from L,
a tree with at most n — 1 nodes, all coloured 1 other than the root ¢;. More
formally, it is the prefix closure £ of the set of leaves {{a;L),...,{a;L)}, where
ap <@g < +-+ <y, each ¢; is an element of N. A picture of this tree is in Fig.

All vertices v € B are mapped to the empty sequence denoted by (). For
all vertices v ¢ B, we define p to be the ™ child of the root (a; L), where i is the
Steven attractor length of v to B. Such a mapping u has B, = @ for all v, all the
edges satisfies B trivially.

Now we consider all edges that would be used by Steven in the attractor
strategy, along with all of Audrey’s edges. We now show that such an edge u — v
satisfies G, or G;. Notice that if ¢y € G, i.e, u € B, then edge u — v satisfies G, .
Else, pu(u) > p(v), since it must be the case that the Steven attractor distance to B
from wu is at least one more than this distance from v (this is an edge in the strategy
graph). Therefore if p(u) = (a;L) and p(v) = (a; L), then a; > o; and therefore
p(u) > p(v).
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Suppose C # @. We have a (cg, C')-colourful decomposition D, where
D= (A7 (clv ‘/172)17141)7 LR (Cj7 VjapjaAj)> .

Then for each Vj, since it has a (¢;, C'\ {¢;})-colourful decomposition, by induction,
we have a mapping p; to an L-labelled (¢;, C'\ {c¢;})-colourful tree L;.

We give a Rabin measure y into the labelled colouuful tree 7 below

{{af1). ... {afL1))

J . . A
{agci o L;, (aﬁJ.) ey <o¢,§J_> }
i=1

where ozé are elements from IL such that azl < 042,2 if 47 < 15 and aé L < aéQ if /1 < £s.
The tree is such that we add in order, £ = n — 1 many children coloured with L to
the root followed by the recursively obtained (¢;, C;)-colourful tree £; to the root for
each i. A picture of the tree is given in Fig.[9.5] where the pink and the blue triangles

represent the trees obtained recursively. We define p(u) from a decomposition D

above as follows.

T S

@) O

Figure 9.5: Suppose C' + @

If u € A and ¢ € Gy, then u(u) = ().

Ifue A\ {veA|c €G,}, we define pu(u) = <a2L> where / is the attractor

length from u to the set consisting of all vertices v such that ¢y € G,,.

For vertices u € V;, we define u(u) = ape; ® ().

For vertices u € A;\V;, we define p(u) = (ozéJ_) where £ is the Steven attractor
length from u to V; in G;.

We show that the p defined above satisfies the conditions required for it to
be a Rabin measure by instead showing that each edge in the graph G is consistent.
First, we make the following observation about the defined mapping. For the rest

of the proof, we sometimes write Ay to also mean A and let Vj represent the set
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{ve Al|c € G,}. Let G; be defined similarly to the definition of a decomposition,
where G = V' \ A, and G;,1 = G; \ A;. Furthermore, we define G, as the game G.

(%) Fori € {0,1,...,7}, any vertex in u € V'\G; is such that u(u) < u(v)
for all v € G;.

Moreover, we fix a Steven attractor strategy in each A;, restrict Steven to only this
strategy edges from his vertices and argue that all such edges are consistent, to

argue that u is consistent.

e Ifu € Aand ¢y € G, since u(u) = (), for such a vertex any edge u — v satisfies

G,, since the root is coloured with ¢y, and also satisfies B since ¢y ¢ B,,.

o If u € Aand ¢y ¢ Gy, then pu(u) = <a2l>, where /£ is the length such that u
is in the ¢ is the Steven attractor length. Therefore, neighbours in the game

restricted to the Steven attractor strategy, must be assigned to 0421 where
El < /.

o Ifue A;\V, for i € {0,1,...,5}, and suppose u(u) = <aéJ_> we show that

edges from u satisfies G,.

— If v € V'\ G;, then edge u — v satisfies G, from (%), as all vertices in

V'\ G; are mapped to a node strictly smaller than u(u) already.
— If v € A;, all paths using the Steven attractor strategy A; in G; (as defined

in the definition of a decomposition) leads to a vertex in V.

— If v € V; then by definition it is mapped to a descendent of aé and is
therefore assigned to a value smaller than <a;l>, and satisfies G,. If not,
then v is a neighbour of v in A; \ V; and must have its Steven attractor

distance (to V; in G;) to be strictly smaller than that from w.

Therefore for any neighbour v, from our assignment of p, it must be the case
that u(v) = <o¢%1J_>, where ¢ > f1, and hence pu(u) > pu(v). Observe that all
edges from wu also satisfies B because the only ancestor of u(u) is (), and is

coloured with ¢y and ¢y ¢ B, for any v, and therefore specifically ¢y ¢ B,,.

o If u e V;forie{l,...,5}, for all edges u — v, v is either in V; or in V' \ G;
since there are no paths using the Steven strategy fixed from V; to G; \ V; (V;
is a trap for Audrey in G;). If v € V'\ G;, we know p(u) > p(v) from (*), and
thus G, is satisfied. On the other hand if v € V;, then p;(u) and p;(v) are
both defined. If edge u — v satisfies G, with respect to p;, then it continues
to be satisfied in p since colour(u(u)) = colour(u;(u)). Otherwise, the edge
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u — v satisfies Gy in p;, i.e. p;(w) > p;(v). Then pu(u) > p(v) since p appends
the same value to the beginning of u;(u) and p;(v). Thus, G, is satisfied with

respect to p.

Observe that ColourSet(u(u)) = ColourSet(u;(u)) U {c;}. Also, notice that
from the definition of a decomposition ¢; ¢ B, for any u € V;. So, if
ColourSet(u;(u)) N B, = @, then B, n ColourSet(u(u)) = @. Thus, B is
also satisfied by edge u — v. O

For the proof of Lemma [9.2.6| which would show how a Rabin measure serves
as a witness that all infinite paths in a Rabin graph satisfy the Rabin condition,
we require the following two simple facts on trees. These hold in general for all
ordered trees and not just colourful ordered trees. First one in Proposition
says that among two nodes in a tree, any ancestor of the larger node is always either
an ancestor of a smaller node or is also larger than the smaller node. The latter
proposition is about an infinite sequence of nodes in a tree where two consecutive

nodes satisfy some given properties.

Proposition 9.2.4. Any ancestor t of t' is such that for any other node " < t',

either t is an ancestor of t" ort is strictly larger than ",

Proposition 9.2.5 (Lemma 1, [KK91]). Consider an infinite sequence p of nodes
from L, an LL-labelled (cq, C')-colourful tree, where p = tg,ty,...,t;,.... Suppose for
all j €N, if

(i) eithert; > tj 1 or
(ii) t; is an ancestor of tj4
then the smallest element of the sequence, denoted by t,¢ must be
1. the largest common ancestor of t; and t;1q infinitely often
2. an ancestor of all but finitely many t;s.

Proof. Let p be the position after which all ¢, such that k£ > p are such that ¢, €
Inf(p). Without loss of generality, assume t, = tn,;,. Clearly, t,,; = t,, since it is

the smallest among inf{p}.

1. We recall that ¢, > t,,; or t, is an ancestor of ¢,,;. And we can conclude that
t, is an ancestor of ¢,,;. Since after position p, each element occurs infinitely
many times, we have that ¢,,;, is the largest common ancestor of ¢, and all

its occurrences t; and its successors t;41.
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2. We also argue that ¢, is an ancestor of all ¢; for j = p. Let the next occurrence
of tyin in p be at t,, where ¢ > p. We will show that for all p < j < ¢, i is
an ancestor of ¢;, or equivalently that ¢, is an ancestor of ¢;. Indeed, consider
tostprts - s g
We show t, = GCA(t,,t,) = GCA(t,,tpr1) = +++ = GCA(t),t,) = t,. We
proceed by induction. In the base case, trivially ¢, is an ancestor of t,. We
assume as the induction hypothesis that ¢, is an ancestor of ¢,,;. We know

that t,,; and t,,,41 satisfy either t,,; > t,,,41 or t,4; is an ancestor of #,,;41.

In the latter case t,,; is an ancestor of ¢,,;,1. By the induction hypothesis
we have that ¢, is an ancestor of ¢,,;. Therefore, we conclude that ¢, is an

ancestor of t,441.

i

In the former case, we invoke Proposition with ¢ 1= t,, ¢t =

= tp+i+v1. We consequently get either ¢,,;,1 < 1, or £, is an ancestor of

tp

claim. O

tp+; and

+i+1. Since t, = Ty, this gives us ¢, is an ancestor of ¢,,;,; concluding our

Lemma 9.2.6.  If there is an L-labelled (cg, C)-colourful Rabin measure for a
(co, C)-colourful Rabin graph G and no vertex is mapped to T, then the game is

winning from all vertices.

Proof. Let the Steven strategy consist exactly of the edges that are consistent with
respect to p from V to the (c¢p, C)-colourful tree £. Consider an infinite path
=1y = vy = -+ = v; > ... inG. We define the infinite sequence p(w) =
w(vo), p(v1), ..., u(vj), ..., obtained by taking the image of the run by p on the
colourful tree. In this colourful tree, consider ¢ to be the smallest element among the
elements of £ that occur infinitely often in the sequence u(7), and let ¢ = colour(t).

For such a ¢, we show

1. ¢ is not coloured with L;
2. ¢ € GG, for infinitely many v in 7, and

3. ¢ ¢ B, for each v occurring after some finite prefix in 7,

to conclude that 7 is satisfies the Rabin condition. Before we begin the rest we first
remark that from conditions G, or G, we get that (v;,v;41) is such that either one
of the following is true, either pu(v;) > pu(v;1), or u(v;) = GCA(u(v;), p(vje1))-
Therefore, t, defined as the minimum element that occurs infinitely often
in the sequence p(7) must be the greatest common ancestor of p(v;) and p(vieq)

infinitely often. Moreover, it must be a common ancestor of u(v;) for almost all j.
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To show [1| consider a vertex v;, and (v;, v;41) which occurs infinitely often in
the play 7 for which u(v;) = t and also where the edge is consistent. This especially
means that this edge satisfies condition G, or G;. If v; is coloured with L, this edge
can only satisfy Gy, and hence p(v;) > u(viz1), a contradiction to the assumption
that p(v;) = mininf(u(m)).

Item [2| which claims that ¢ € G, infinitely often for vertices from the play
7 also follows from the above conditions as edge (v;,v;;1) identified in the above
condition should satisfy G,infinitely often where u(v;) = t.

Finally, we show Item [3| that ¢ ¢ B, for any v after some finite prefix of
m. This is because for any (vj,v;4+1), where we have ¢ ¢ ColourSet(u(v;)) from
condition B. Since we had earlier observed that ¢ is a common ancestor of u(v;) for
all but finitely many of the edges (vj,v;4+1) in 7, we must have c ¢ B, for all but
finitely many v;s. O

Remark 7. A similar statement to the equivalence of item[1] and[3 has been proved
in the work of Klarlund and Kozen [KK91|] for the restricted setting of Rabin graphs,
however, a reader familiar with their work might have observed some differences in
the definition of a measure. Our definition of colourful trees is more restrictive
than theirs. For instance, colourful trees in the work of Klarlund and Kozen have
no restrictions about the colours along a path in a tree, i.e, in their definition, the
trees can have the same colour along a path and in fact only a partial colouring is
required. However, an examination of their proof reveals that in the direction of
the proof where they construct a Rabin measure, they inherently use a construction
which produces a mapping into colourful trees as we have defined and therefore, it
18 enough to only consider such trees. We make this explicit and have proved it to

sutt our situation.

9.3 Lifting algorithm for Rabin games

We wish to utilise the characterisation of Rabin games in terms of colourful decom-
positions and Rabin measures that map vertices to colourful trees to produce faster
algorithms. We first provide an algorithm, that given a (¢, C')-Rabin game decides
if this game has a Rabin measure into a fixed (¢y, C')-colourful tree. This algorithm
is a lifting algorithm that keeps track of an underlying map from the vertices to
a labelled colourful tree and then repeatedly modifies this map until it obtains a
Rabin measure. The running time of our algorithm is given in terms of the time it
takes to navigate such a tree, but later in Section [9.4] we show the exact values of

tree that are constructed to solve required to solve Rabin games.
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A reader familiar with the work of Colcombet, Fijalkow, Gawrychowski, and
Ohlmann [CEFGO22] as well as our charecterisation can deduce that colourful trees
form what are known as a “universal graph” of a Rabin game. Moreover, Colcom-
bet, Fijalkow, Gawrychowski, and Ohlmann [CFGO22] show that if such a universal
graph exists, then one can also construct a (progress measure) lifting algorithm that
runs in time that is linear in the size of a colourful tree into which we have a Rabin
measure for the game. However, implementing such an algorithm is non-trivial,
as the proof of space requirements makes certain assumptions on the underlying
model. We hope that our description provided here makes any future implementa-
tion straightforward, and this serves as a quick resource for such endeavours.

We describe an algorithm that identifies if a Rabin game G is winning for
Steven, using Rabin measures defined earlier for Rabin graphs. Towards this goal,
we define monotonic, inflationary operators on the set of all maps from vertices of
a game to a tree such that the simultaneous fixpoints of these operators exactly
correspond to a Rabin measure.

Consider a Rabin measure p which is a function mapping the vertices V' of
a (cp, C)-colourful Rabin game G into an L-labelled (cg, C)-colourful tree £. We
define a function lift,,, which maps edges E of the arena of the game to £". For an
edge u = v of G, we define lift,(u,v) to be the smallest element ¢ in L' such that
t > p(u) and edge u — v is consistent with respect to the mapping p[u :=t]. We
use the notation pf[u := t] to indicate the mapping p' where p'(z) = p(z) if z # u
and u'(z) = tif 2 = u.

For each vertex v, we define an operator Lift, on the lattice of all maps from
V to £'. The operator Lift, only modifies an input map p at v and nowhere else.
We define

wlu) for u # v
Lift, (1) (u) = {ming, pyep {lift, (v, w)} fu=veV,

max(y w)eFE {hftu(vﬂl))} fu=ve ‘/;.

Proposition 9.3.1. The function Lift, is monotone for each v.

Proof. We show that for two measures p; < pg, Lift,(uq) E Lift,(ue). Note that
it suffices to show that for Steven’s (resp. Audrey’s) vertices v, the value t; =
ming, ., {lift,,, (v, w)} is at most as large as t, = min,_,,,{lift,,(v,w)} (using max
for Audrey instead). Instead, we argue that ,u'l, defined as uq[v := t5] ensures that
the vertex v is consistent. Let v — w be the edge that is consistent in le = Lift, (p2).

We claim that the same edge(s) v — w is still consistent in ,u'l.
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o If v —» w satisfied G, with respect to /~L’27 then it continues to satisfy G, with

respect to juy, since 1 (v) = p(v) > pa(w) = p(w).

o If v — w satisfied G; with respect to M'Q, then it either continues to satisfy
G, or satisfies G, with respect to u;. To see this, we observe that ulg(v) is
I I I ..
an ancestor of uy(w) = po(w), and ps(w) = py(w). From Proposition
I I . I . .
we consequently get uq(v) > py(w) or py(v) is an ancestor of py (w), which is

exactly G, or G respectively.

o If u — v satisfied B with respect to ,ulg, then it continues to satisfy B with re-
spect to uy, since uy(v) = g} (v) and ColourSet(p(u))NB, = ColourSet(u (u))N
B, = @. O

We know that each Lift, is inflationary and monotone. Therefore, the simul-
taneous least fixpoint of Lift, on the map p, which maps all vertices to the root
of L exists (from the Knaster-Tarski theorem [Tarbh]). We can moreover state the
following proposition that such fixpoints correspond to the Rabin measures, which

almost follows from our definitions.

Proposition 9.3.2. For a (cg, C)-colourful Rabin game G where the vertex set is
V and a fized LL-labelled (cy, C)-colourful tree L,

e any simultaneous fixrpoint of the set of functions Lift, for all v € V is a Rabin

measure;

e any Rabin measure is a simultaneous fixpoint of Lift, for allv € V.

Our algorithm, like any other progress-measure algorithm, computes this si-

multaneous fixpoint of Lift as follows, the correctness of which follows from Propo-

sitions [9.3.1] and [9.3.2

Algorithm 10 The lifting algorithm on game (¢, C')-colourful Rabin game G with
vertices V to tree £

1: Initialise: For each v € V| u(v) is declared to be root in £

while there is some vertex v that is inconsistent with respect to u. do
i Lift, ().

end while

return p

Remark 8. If there is (cg, C)-colourful Rabin game G and a LL-labelled (cq, C')-
colourful tree E', such that there is a Rabin measure u' from V to E', and L embeds
L", then there is also Rabin measure u to L. All the elements that are not mapped

to T by u' are still not mapped to T by p.
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Running time complexity. For a finer analysis of the runtime, we need to
understand the size of the lattice where the lifting algorithm takes place. However, in
this section, we restrict ourselves to analysing the running time of our algorithm for
a fixed tree £, whose size is denoted by |£|. Additionally, we report our runtimes in
the form of operations performed to navigate the underlying tree £. In Section [9.4
we construct sufficiently large colourful trees that can solve Rabin games of a fixed
number of vertices and colours and expand on the time and space complexity of

these operations on these constructed trees.

Lemma 9.3.3. Given a mapping from the vertices of an n-vertex (cy, C')-colourful
Rabin game G to a LL-labelled (cy, C)-colourful tree L, the value of Lift,(u)(v) can
be computed in time proportional to O(deg(v) * Thext), where deg(v) is the degree

(number of outgoing edges) of v and Tyex: is defined as the mazimum of
e the time taken to make a linear pass on a node in L;
e the time taken to compute the next node in L;

e givent € L and C' € C such that colour(t) € C', the time taken to find the

next node that uses colours only from C' U {L}.

Proof. We first answer the following question: given an edge u — v and a mapping
1 to ,CT, can we calculate lift,,(u,v) quickly?
We show how to define and compute lift,(u,v) function using the following

subroutines:
e computing the next node, and

e computing the next node whose colour set contains colours only from c'u {1}

where the colouring of the given node is in c'cc.

Henceforth, we denote the successor of node ¢ in £ with respect to the order < by
next(t). A naive way to compute lift,(u,v) would be to apply next to u(u) and to
check each time if the edge u — v satisfies the consistency properties. But such an
algorithm would potentially take exponential time to compute some lift functions.
We remark however that this naive algorithm would only add a polynomial factor
to the upper bound to the worst-case complexity of our run-time after amortisation.

We will now give the function, which directly computes lift,(u, v) using only

two primitives after a linear scan

(a) computing the next node in the tree;
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(b) computing the next node whose colour set contains colours only from ' U{L}

where the colouring of the given node is in c'cc.

It can be inferred from the procedure described in the following paragraphs
that we need only finitely many linear passes on a node when represented as a

sequence of labels and colours.

Edge u — v is already consistent. In this case, u — v already satisfies at
least one of G, or G along with (R) in p. Hence lift, (u,v) is set to pu(u), continues

to make © — v consistent.

Edge u — v satisfies G, but not B. In this case, we only need to find
the smallest value larger than p(u) whose colour set does not contain any colours
from B,. Let u(u) = (alcil, <y appc; ) where o; € L. We achieve this by finding
the largest position s that gives ColourSet((alcil, e ,ascl-5>) N B, = @. Then we
compute the smallest child ¢ larger than the node above, t = (alcil, ces ,a5+1cis+1)
that gives ColourSet(t) N B,, = @ and set lift,(u,v) to t. The computation clearly
takes time at most Tpext-

Since p(u) > p(v), lift, (u,v) > p(u) and lift, (u,v) doesn’t use any colours

from B, the edge u — v satisfies G, and B in the new mapping.

Edge u — v satisfies G, but not G, or B. We again take p(u) =
(alcil, e ,amcim>. Since u — v satisfies G, we know that u(u) is an ancestor of
u(v). We argue that the smallest value larger than u(u) that also satisfies B does
not satisfy Gy, but rather satisfies G,. This is because there is an ancestor of u(u)
(and thus, of u(v)) that is coloured by a bad colour for . Since lift, (u,v) must be
larger than p(u), it cannot be set to an ancestor of u(u). Then, it should be set to a
larger sibling of one of the ancestors of u(u). Since any larger sibling of an ancestor
of pu(v) is always larger than p(v), the smallest value of lift,, (u, v) that makes u — v

consistent satisfies G,. We have therefore reduced this case to the previous one.

Edge u — v satisfies neither G,, G, or B. Since the edge does not
satisfy G, we know u(u) = u(v). We go through the ancestors of u(v) one by one
in increasing order to see if there exists one that is both strictly larger than pu(u),
and satisfies B. If there exists one, then we set lift,(u,v) to the first such value
found, and u — v satisfies G; and B in the new mapping. This computation takes a
linear scan through at most the length of x(v). If none of the ancestors satisfy these

constraints, then we know that lift,(u,v) has to be at least as large as next(u(v)).
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Thus u — v has to satisfy G, and B in the next mapping. Once more, we have
reduced this case to the previous ones.
We have concluded that computing lift,, (v, w) takes time at most O(Thext)-

Recall the definition of Lift, by using lift,(v,w) as a subroutine.

wu(u) for u # v
Lift, (1) (u) = {ming, wyep {lift, (v,w)} fu=ve Vg

max(, wyep {lift, (v, w)} ifu=veVy

It is therefore easy to conclude that Lift,(u)(v) takes time at most O(deg(v) * Thext)
O

First, we observe that performing Lift, on the mapping strictly increases the
mapping for a vertex that has no consistent edges. Each operation of Lift, also
calls at most deg(v) many calls of lift, (v, u) for some edge v — u. Suppose each
operation lift,(v) takes time Thex, to find the value of Lift,(u)(v) takes time at
most deg(v) « Thext- Since each non-trivial application of Lift, strictly increases the
value that v is mapped to, it can be called at most as many times as the number of

nodes in tree £, this ensures that the time taken is

> deg(v)| L] (Tnext) € O(m|L] Thext) -
veV

We finally conclude this section with the following theorem.

Theorem 9.3.4.  For a (cq,C)-colourful Rabin game G with n vertices and m
edges, and a IL-labelled (cy, C)-colourful tree L, Algorithm on game G with colour-
ful tree L returns the smallest Rabin measure to L in time O(m|L|Thext) where
Thext is as defined in Lemma[9.3.5 and |L| denotes the number of nodes in L.

9.4 Small colourful-universal trees

We observed that our algorithm from the previous section correctly identifies the
smallest Rabin measure into a fixed labelled colourful tree £. However, by Theo-
rem we know that there exists an L-labelled (cq, C)-colourful tree £ with at
most n leaves. Therefore, for a Rabin game, there is a Rabin measure into LT where
all start vertices from which the game is winning for Steven are not mapped to T.
To successfully determine the winner of all (cg, C')-colourful Rabin games with n
vertices, we need to ensure that the tree £ used in Algorithm [10] would be able to
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embed all (cq, C)-colourful trees with n leaves. Since the running time is linearly
dependent on the size of the tree, smaller trees that satisfy the above property are
desirable.

We show how to construct wuniversal colourful trees. We say that (cp, C)-
colourful n-universal trees are colourful trees that are large enough to embed any
(cg, C)-colourful £ with n-nodes. We also modify previously discussed

[Lazi¢ universal treeg [JL17] to encode each node of these universal colourful trees

using space proportional to a O(klog klogn), which helps navigate these labelled

colourful trees efficiently.

Definition 9.4.1 (n-Universal (cg, C')-colourful tree). A (cg, C')-colourful tree U is

n-universal, if it embeds any (cq, C)-colourful tree T with at most n leaves.

We henceforth assume that C' = {c;,...,¢,}, with the fixed ordering c¢; <
cy < +++ < ¢p, on the colours, and k = h + 1.

A straightforward approach to creating an n-universal (cg, C')-colourful tree
could involve combining all potential (cg, C')-colourful trees with no more than n
leaves and with the root colour ¢y, and concatenating them. Clearly, such a finite n-
Universal (cy, C)-colourful tree can be created as there are only finitely many such
trees up to isomorphism (for a fixed C' and n). But of course, this tree is not
only large, but can also be difficult to navigate. An alternative, more manageable
approach is to construct a tree that branches n - |C| many times at the root. These
initial subtrees, resulting from this n - [C| branching, are rooted with n repeating
blocks of the h colours c¢q,cg,...,c, in order. For example, if h were 2, then the
colours of the children of the root would be, in that order, c;,cy,¢1,c,...,c1,Co.
Each of the children in turn branches into n -« (|C'| — 1) many times recursively. This
creates a tree of size bounded by nhl. Remarkably, this very tree (whose nodes
are represented as tuples) serves as the underlying structure that underpins the
algorithm devised by Piterman and Pnueli [PP06] which led to their O(mnk+1kk!)
algorithm.

In the subsequent text, we give a more involved construction—inspired by

the [Jurdzinski-Lazi¢ universal trees—of a significantly smaller universal tree. In

our construction, we inductively describe such a (cg, C')-colourful n-universal tree,

which we call U(KCOC), for all n < 2°.

e if C' = @, then there is exactly one tree to embed, and therefore

Uiy = (e (L. 0"))
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e if / =0, then the tree to be embedded has exactly one leaf and therefore, for
each colour ¢; in C, we have a child of colour ¢; which hosts a subtree rooted

at ¢;. This is defined inductively as

0 0 0
U(CO,C) = (007 <Z/{(cl,Cl)7 cee 7M(ch,ch)7 (La <>)>)
where C; is C'\ {¢;}.

o if C #+ @ and ¢ > 0, then we define the coloured tree to be two copies of
an n/2-universal tree, and |C'| many copies of the n-universal tree where one

colour is dropped each time. More formally,

4 /-1 4 0 /-1
U(CO,C) = U(CO,C) : (COa <u(cl,01)7 s 7u(ch,Ch)a (J-7 ()))) : u(co,C)'

In Fig. we demonstrate how the inductive construction is done if ¢y = @ and
the set of colours is C' = {e,e, }. To the left and right are the (e, C)-colorful
n/2-universal trees and between them, there are |C'| many n-universal trees each of
which uses one fewer colour and one node with just the dummy colour represented
there by @.

([ ]
7 T\N
©

A 0 0
Uogo,y  Upgo,y U oo

Figure 9.6: Inductive construction of a colourful n-universal tree

Theorem 9.4.2. For C # @, and k = |C| + 1, and ¢ = [lgn], the colourful tree

U{CO,C) constructed is a (cg, C')-colourful n-universal tree with the number of leaves

o (1)),

Proof. Firstly, we show that Z/{(ZCOC) is (¢g, C')-colourful n-universal tree (in Proposi-

tion . Then we prove that L{(ECO,C) has at most 27 - k! - 4° leaves in Lemma
l+k
k-1
to the proof of our theorem. O

no larger than

and at most ( ) - 2% - k! leaves in Lemma 9.4.5, both proved by induction, leading
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Proposition 9.4.3. The (cy, C')-colourful tree U(ECO7C), embeds any (cg, C')-colourful

tree with at most n leaves where ¢ = [logn].

Proof of Proposition[9.4.3. Consider any (cg, C')-colourful tree 7 with n leaves. The
statement is trivial if C' = @, since from our construction, our tree is such that all
n leaves have colour L. We assume C' # @ but £ = 0, and therefore n = 1. Let

C ={ci,...,cp}. In this case, we have

Utep.cy = (0 Uerc0s - U 00 (1 (D))

We must either have T = (cg, (7;)) for some (c¢;, C' \ {c¢;})-colourful tree 7; or al-
ternatively, 7 = ((L,())), and clearly from the construction, it follows that this
tree can be embedded in Z/{&O,C), recursively, by choosing an appropriate subtree
(ci,Z/{([)ci7Ci)), and recursively embedding 7; in Z/{(O%Ci).

If we consider the case where n > 1 (and therefore ¢ > 0), and for this case,
let T = (co,{T1,-..,Tm)). Let n, represent the number of leaves of 7,. We know
> n, = n. For each p, we define

7:p=(607<71>°"57;)—1>) and 7;p:(607<7;)+17"'7Tm>)'

There must be at least one p for which both trees 7., as well as 7, have size
at most n/2. The existence of such a p can be shown by defining the summation
N; = Zgzl n; which ranges from 0 to n as j ranges from 1 to m. Then there must
be some point where N; exceeds n/2, giving us our desired p.

Since both 7T, and 75, have at most n/2 leaves, by induction Z/I(ec_o }C) embeds
T<p as well as T, since C' contains all the colours in 7, and 7, and each tree has
less than n/2 leaves. Furthermore, u(ecz'pﬂip) embeds 7, where ¢, is the colour of
the root of 7, and C; = C \ {cz-p}. Observe that for each ¢;, there is a copy of the
tree of L{(Z e.c;)» Where C; = C'\ {¢;}. Hence from the construction of M(ECOC), the tree

T=Tp-" (007 (E)) “Tsp

can be embedded into

4 /-1 4 4 /-1
Z/{(CO,C) = u(co,C') : (607 <Z/{(cl,Cl)a s 7u(ch,C’h)7 (J-a <>)>) : z’{(c(),C)' 0

Lemma 9.4.4. The tree U(ZCO,C) has at most 2" - k! - 4° many leaves where k =
|C U {co}]-

Proof. Let us denote by U(4,h), the number of leaves in the tree L{(ZCO’C) defined

174



above, where |C| = h.
Ifk=1,h=k—-1=0then U(/h) = 9t by construction.
If £ = 0, then we show by induction a stronger statement that U(0,h) < hlh

for all values of A = 1. Indeed,

Z/’(OcmC) = (co,(u(ochcl),...,u?%Ch),(L,())»
From this we can infer that

UW,h) < (k-1)-U(0,k—1)+1
Since we already know U(0, 1) = 1, inductively, we can show that
UW,h) <h-UW0O,h=1)+1<sh-((h-1)!)+1<hlh
For ¢, h > 0, recall that
Uey.c) = Ucoicy (e Uler.c0y:- - Uiancry: (1 D)) - Uiy

Therefore, we see that for £, h > 0, the following recurrence relation holds

Ul,h)=2-Ul—-1,h)+h-Ulh-1)+1

We prove U(4,h) < 4 hhr- 2", by induction.
For the base case, for the values U(0, h) and U(4,0) are at most 4% hh! - o
and therefore the inequality holds. We assume, for ¢ < £ and j < h, that U(t,j) <

4t 97 77! as our induction hypothesis. For this ¢ and h, observe

U(L,h) =2U( = 1,h) + UL, h —1) + 1
2- (@7 2" () R (452" m) H 1

N

N\

[Nl NG Nl

(42" mh) + n (452" (= DR = 1)) + (452" (a)Y)

4

(42" i) + (452" min)

(42" nin) + % (4" 2" - hin)
=45 9" ()

|
W

Since h = k — 1, our claim follows. ]

Lemma 9.4.5. The tree L{(E%C) has size at most (ii’;) 2L k1, where k = |C'U{co}].
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Proof. Let us again denote by U(/,h), the number of leaves in the tree Z/I(ZCO’C),
where |C| =h =k - 1.
If h =0, then U(4,h) = 2° by construction, and therefore we have U(/,0) =
(Z+h+1)hﬂ2£
. 12",
If ¢ = 0, recall from the proof of Lemma we show that U(0,h) < hlh
for all values of h = 0.

Now, suppose £, h > 0, then we have

Ul,h) =20 —1,h) + hU(L,h —1) + 1

<2 ((2)“1 : (g-;h)(h)!h> +h (2" : (flt}i)(h _ )ik - 1)) £1
< (25 : (ﬁ’ﬂ(h)!h) + <2f : (itﬁ)mnw - 1)) + (2‘ : (it}{)(h)!)
<2’ h!h((fzh) + (it]}))

{+h+1
= 2f.h!h< n )D

9.4.1 Lower bounds on the size of universal colourful trees

We show that our construction is near-optimal as we have a lower bound on the
size of m-universal (cg, C')-colourful trees, which is within a polynomial factor of the

upper bound.

Lemma 9.4.6 (Lower bound on universal colourful trees). Any n-universal (cq, C')-

colourful tree must have size at least (le_l)(k‘—l)! where k = |C|+1, and £ = |logn].

Proof. We first recall a theorem on the lower bound of (colourless) universal trees
by Czerwiniski et al. [CDF"19], inspired by the lower bound results for trees by
Goldberg and Livshits [GL68].

Theorem 9.4.7 (|[CDF"19], Theorem 2.3).  For natural numbers n and h, every

(n, h)-universal tree has at least (ngjjlh_l) leaves.

To prove our results, we first fix a permutation of colours ¢; ,...,¢; and

consider any tree with n leaves where the order of colours from the root to the
leaf is exactly the same as the given permutation. We also require that the tree
be equitable, that is, all leaves have the same depth from the root. Then this

tree must have size at least the size of a 2-universal tree of height h (defined for
£+h-1

b1 ) from

ordered tree without colours). Such universal trees have size at least (
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Theorem [0.4.7] Then, for each choice of permutation, the universal tree restricted to
{+h-1
h-1
by fixing different permutations cannot share a leaf due to the distinct colours

that permutation must have size ( ) Furthermore, two universal trees obtained

assigned to the same ancestor of the leaf. Therefore, we get a lower bound of
(£+h—1

S )h! on the size of (cg, C')-colourful n-universal trees.

Immediately, for k = |C| + 1, this gives us the bound (“2_2)(14: —1)!. This
closely matches one of the upper bound of our construction by at most a polynomial

factor in n and k. O

Labelled universal colourful trees. Here, we give a labelling of a universal
colourful tree described in the previous section by giving an W-labelling of any
(¢, C)-colourful tree. Recall from Chapter [2| that the set W = {0,1}" has a
istring orderingl on W which is a total ordering. 0 < € < 1 and for by,by € {0,1} we

have by - wy < by - wy if and only if b; < by or by = by and wy < ws.
Any node in a W-labelled (cq, C')-colourful tree can be represented by a word

of the form below
t={0,1}¢;, - {0,1} ¢+ - {0,1} ¢ ,

where ¢;, # ¢; if ¢ # j and ¢;; = L if and only if j = m. We call the number of 0s
and 1s occurring in t, the number of bits used to label t. We show in the following
lemma that it is possible to have a labelling of our universal colourful tree L{(thc)

such that the encoding of each node in it is “short”.

Lemma 9.4.8. There is a W-labelling of the tree L{(ZCO’C), denoted by Eé such that
the number of bits used to label any node of Eé is at most £.

Proof. We expand on the notation that we used in Chapter [5| in the construction

below to obtain a W-labelling of Z/{((ZCO’C), and recall some new notation.
e For b€ {0,1} and each w; € W - C, we define
b
[L] ={(b-wi,wa,.. wn) | (wr,w,.. . wi) € L}

In words, [E]b is the labelled ordered tree that is obtained from £ by adding
an extra copy of bit b as the leading bit in the labels of all children of the root
of L.

e Recall that for a prefix closed set £ and w € W - C, we define w ® L as the
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prefix-closure of the set

{(w7w17w27"'wm) | (w17w27"‘7wm) € ﬁ}

obtained by the addition of the term w to the prefix of the tuples in £ for each

tuple in the set £, and taking its prefix closure.

Consider the (c¢g, C')-colourful 2* universal tree Uf 0.C)"

e if / =0 and C' = @, then clearly, Eé, defined as the empty tuple () and uses

no bits to label each node in the tree.

e if /=0 and C # @, then we define EEC to be

U (é‘Ci o] EOCZ.)

i

where each E%i is the recursively obtained labelling for u(oci,ci)- Observe that
no extra bits are used in addition to the bits used by each L'%Z,. Since each
5%1- uses 0 bits to label their nodes, Eé also uses 0 bits to label each node in
the tree. Also note that this set is prefix closed.

e if />0 and C # @ and recall that

0 /-1 0 ¥4 /-1
Uleo,c) = Uieo,cy * (0 (Uier.cr)s - - Uien,cny (1)) - Uicoro-

Let Eé be a labelling of LI(Z co,0)» defined as the prefix-closed set
170 11l
[2c'] v ) oLe, ueL) v [Le']

where Eec_l and £€CZ_ are labellings of L{(ZC_O %C) and L{(E%Ci) respectively, and use
at most £—1 and ¢ bits to encode each of their nodes. Hence LZC as constructed

uses at most ¢ bits to encode each node.
O

Recall that we denoted the time taken to navigate this tree for the purposes
of our lifting algorithm as Tphe. We rigorously prove that this value Tpey for this
tree defined above is O(klog(k)¢) where the tree uses k colours. Finally, we get our
main theorem of the section as stated below. We postpone the technical details of

the proof of the theorem to the end of this section.
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Theorem G. A winning strategy for Steven in a Rabin game with n vertices, m

edges, and k colours can found using O(nklogklogn) space and time

5(nm - k! min {n2k, ([lgkn_] I- k)}) .

Proof. We know that the lifting Algorithm [10] for a (cq, C')-colourful tree finds the
Rabin measure into the tree £ in time O(mn|L|Tpext)-

For a game with n vertices, we instantiate the algorithm with £ being the
W-labelling of the (cg, C')-colourful 2€—universal, tree the tree M(EC(),C) constructed,
where ¢ = [1g(n)]. L therefore has at most (nk! min {an, (“gk’i];k)}) many leaves
from Theorem and hence at most k£ times as many nodes. Moreover, we show
that the time taken to navigate the tree They is at most O(k¢log k) in Lemma [9.4.9)

and Proposition [9.4.10 ]

The following lemma proves the last piece required in the proof of our theo-

rem, by showing that one can navigate these trees quickly.

Lemma 9.4.9. Given a node in the W-labelled (cq,C')-colourful tree Egc, with
at most 2° leaves one can compute the next node larger than a given node in time

O(klog(k)t), where k = |{cp} U C]|.

Proof. We first introduce, for a € N, a function nextstring” that takes a string w on
{0,1}* with |w| < a and calculates the smallest w' with |w'| < a that is larger than
w, if it exists (with respect to the ordering on W).

For example, for a = 3, the succinct encoding gives us the following order:
000 <00< 001 <0<010<01<011<e<100<10<101<1<110< 111

and the nextstring” function gives us exactly this ordering. That is for in-
stance, nextstring”(0) = 010 and nextstring’(011) = e. Additionally, for a newly
introduced element 4, we set nextstring® (1) := 4, for example, nextstringg(lll) =4.

Let w € {0,1}" with |w| < b. Then nextstring®(w) is computed as follows,
o If |w| < a, then nextstring”(w) = w10,
o If |w| =a,

— If w = w'01" for some w' and k = 0, then nextstring”(w) = ',

— If w =1, then nextstring”(w) = 4.
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Next we define our desired function nextec(t) that takes a node of ﬁé and
sends it to the next node that is is larger than ¢, and contains colours from the set
C. If no such node exists, it sends it to T.

We apply the following rules to calculate nexté(t) for some node t =

<wlci1, P ,wmcim>:

e If ¢; # L, then t is not a leaf and therefore, nextec(t) is t’s smallest child.
nexté(t) = (wlcil, .. ,wmcim,0a0> where ¢ is the minimum colour in CF \

{ciy,...,ci yanda=1{— > |wil

o If¢c; = 1, thentis aleaf, therefore nexté(t) is the smallest sibling of ¢ that is
larger than itself. Hence, nexté(t) = (wlcl-l, e Wi—1Crm—1 nextstringa(wm)c>

where c is the minimum colour in C* \ {ciy.-.,¢, yanda =0~ Z?l;l |w; |-

Moreover, for w; = 4, we say

_ (wlcil, . ,Wj_10> if Cij—l # J-7
<wlc,-1, Ce Wim1Ciy s b Cij) - ing® Y if =1
W1Ciy, - - -, NEXESEIING (wj_l)c mwe,, =4,

Note that both of these tuples are (j — 1)—tuples. Here, c¢ is the smallest colour
larger than ¢;,_, in ct \{ei, v h ¢’ is the minimum color in C'\ {ciys- - cj=2}
and a = ¢ - Ziz_lg |w;|.

The value 4 is assigned to the last entry of nexté(t) by the application of
rules presented above, only when t is the largest of its siblings. In this case, we
reassign nexté(t) to the smallest sibling of t’s parent that is larger than itself, as
given above. Similarly, if t = (4 - L), then ¢t = T, since Eé is out of nodes.

We conclude this detailed computation of nexté with the observation that

the above computation takes only time O(klog(k)/). O

Proposition 9.4.10. Given a node t in the W-labelled (cg, C)-colourful tree L’é,
with at most 2° leaves and K € C such that colour(t) € K, the next node larger
than t such that ColourSet(t) € K U {L} can be found in time O(klog(k)l), where
k=|CuUc.

Proof. For any node ¢ := <w1C¢1, ... ,wmcim> we know ¢; € K. We first find largest
position s, such that ColourSet ((chil, ces ,wscis>) c K.

We then compute the next node t' to (w1 Ciyynes ws+1cl-s+1) which also only has
colours from the set K, that is ColourSet(tl) € K. But for the tree Eé constructed,

consider the smallest colour ¢ such that c¢ is the smallest colour in (K U {Ll})\
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{ciysCiys - - -5 ¢} larger than ¢;_,,. Observe that the above set is non-empty as such
colour exists, as L € (KU {L})\ {c,,ci,,...,c; }. Hence we just need to return
<w1 Ciyse e s WsCi, ws+1c), which in the tree constructed always exists and the smallest
node larger than ¢ such that ColourSet(t) € K U {L}.

This indeed takes only time linear in the size of the encoding of a node, which
is O(klog(k)el). O

9.5 Strahler number of a Rabin game

In Chapter [4] we identified Strahler number as an important and natural parameter
for parity games and was established to be equivalent to the register number also
defined as a measure of parity games [LB20]. The Strahler number of a parity game
is defined for each player and it captures the complexity of the cycles the opponent
player can trap a player in [DJT20].

The contribution of this section is three-fold. Firstly, we show that the defi-
nition of the Strahler number of a Rabin game extends naturally from parity games.
Secondly, we define and construct ‘small’ colourful Strahler universal trees, closely
following the construction in Chapter 4] Finally, we provide a lifting algorithm on

such colourful Strahler universal trees thus constructed.

Strahler number of a colourful tree. Similar to the Strahler number of a tree,
we define the Strahler number of a (cq, C')-colourful tree, as the Strahler number of
the underlying tree within a colourful tree. More formally, we define the Strahler
number of a colourful tree inductively and say that the Strahler number of any
(cp, @)-colourful tree is 1. For (cg, C')-colourful trees (cg, (7T1,...,Tm)), it is defined
as the maximum of Str (7;) among 7;s rooted with a colour from C' if the maximum
value is obtained from a unique 7;. Else, it is one more than the maximum of
Str (7;) among the trees 7; for all i.

Tree of decomposition of a Rabin game. Recall the definition of a (cg, C)-
colourful decomposition of a Rabin game. We inductively define a tree of a given
decomposition, which captures the shape of the decomposition.

For a (cg, @)-colourful decomposition D = (A), we define the tree Tp as
() rooted at cy. If on the other hand, we have a (¢, C)-colourful decomposition
D = (A, (e, Vi, D1, A1), ..., (¢j, V;,D;, Aj)), then we define the (cg, C')-colourful
tree as Tp = (CO, <(61,TD1) e (cj,TDj») where each 7p, is the recursively ob-

tained colourful tree rooted with colour ¢;.
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Strahler number of a Rabin game. It is defined as the minimum of the Strahler
numbers of all the trees of decompositions of the set of winning vertices for Steven in
a Rabin game G. Although Strahler number of a parity game is defined for both
the players, for Rabin games we will stick to just Steven, since there is no natural

notion of decomposition for Audrey in a Rabin game.

9.5.1 Colourful Strahler universal trees

Similar to Chapter [5| for ordered trees, we define a W-labelled (cg, C')-colourful tree

SE*  such that any (cg, C)-colourful tree with Strahler number at most s, and at
(0070)

most 2° many leaves can be embedded into S(E(’:z oy

In the following sub-section, we again define the corresponding colourful

version of a Strahler universal trees and prove their universality.

Strahler universality for colourful trees. A (cg, C')-colourful tree is said to
be s-Strahler n-universal if it can embed any (cg,C)-colourful tree with n leaves,

whose Strahler number is at most s. The tree we require is defined with the help of

. . . l,s l,s .
mutually inductive constructions of 8(6070) and W(Cmc) as follows:

1. if C = @, and s = 1, then

St = (o (207

2. if C + @ and s =1 then

4,s 2f s 0,5 9t
P (O (EI1) Lo S N L) i )
where C; = C'\ {¢;} henceforth;

3. if |C]2s—-1>0and ¢ =0 then
Stoer = Wener = (0 (S8 (1))
4. if |C|zs—-1>0and £ = 1 then
Wencr = Wentr (0 (S S e (1 D)) - Wiy

5.0 |Cl=s—1>0and €2 1 then 8 oy = W, ¢,
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6. if |C| >s=2and ¢ =1 then

Stncy = Weney” (CO’ <S(eéf17cl)’ E ’Sféfh,ch)>) W0

Proposition 9.5.1. The constructed (cq, C)-colourful tree is Sé‘; o) s s-Strahler

¢ .
2" -universal.

Proof. For n < 26, for a (cg, C')-colourful tree 7, which has n leaves, we show T can
be embedded in

1. chz o) if each 7; such that 7 = (CO, (7'1, ey 7;)) has Strahler number at most

s —1;
2. SZ’S if 7 has Strahler number at most s.
(CO7C)

The details of the proof are omitted as it is very close to the proof of Lemmal5.1.2
in Chapter [4

If C = @, and for any /¢, the Strahler number of 7 is 1, and therefore the
tree can always be embedded in ((L, ())"), and the above statement is true.

Similarly, for any tree with s = 1, since the Strahler number is 1, each node
in the tree must have at most one child not coloured with L. Therefore, a tree 7T
with n leaves and Strahler number 1 is of the form ((.L, ())"™",7;, (L, ())"*), where
ny +mng <n, and T; is a (¢;, C \ {¢;}) colourful with Strahler number 1.

For any tree with ¢ = 0, its Strahler number can be exactly 1, and again,
any tree 7 would have at most one child. This tree can therefore be expressed as
(¢;, (T;)). If the child is ((L,())), then trivially this is embedded. If the child is

coloured with ¢; # L, then Sf“?_l_ embeds this tree. Therefore, so do both SK’S
(szcz) (CQ,C)

and W(Z:;,C).

Now we move to the case where 7 = (co, (7'1, . ,7})) has strictly more than
1 leaf, and Strahler number at least 2. So we have £ >0, s =22 and |C]| = 1.

We show that if the Strahler number of each children of 7 is at most s — 1,
then 7 can be embedded in W(e(’:;c) as claimed. This is because one can find a
value p € [1, 7] such that 7 can be expressed as T + (co, (7;)) * Tright Where both
Treft and Trigne have at most n/2 leaves, and 7, has Strahler number at most s — 1.
Therefore, each T, and Tiight can be embedded in ch_olg) since n /2 < 271 Now
7Tp has Strahler number at most s — 1 and is C'\ {¢;, }-colourful. Therefore, 7, can
inductively be embedded into S(E:Z,,Cp) where C), = C'\ {¢;,}.

If |C| = s =1, indeed all children 7; have Strahler number at most s — 1,
and therefore can be embedded in Wfézvc) by induction and therefore also in S(Z(’:Z’C),
which is defined to be identical.
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If not and |C| > s — 1, then (at most) one of its children, say 7, can have
Strahler number s. Suppose 7 = Tiet - (o, (7)) - Tright» Where T, is a (ci,» C\{ci,})-
colourful tree. Since none of the children of Tieg or Tyigne would have children of

Strahler number s, they can be embedded in chz o) and since 7, does not use

colour ¢; , it can be embedded in S(e:p,cp) where C), = C'\ {cip}. O

We proceed to show that these trees constructed have size (£ +2)2€+s(e::2) (’Z:f)k'

Proposition 9.5.2. If |C| + 1 = s, then the following inequality holds for S(k —
1,s,£), the number of leaves of Sé‘; cy» where |ICl=h=k-1,

s[l+s—2\[k—-2
S(k—l,s,z)s(f+2)2“( oo )(S_1>k:!.

Proof. We prove this by mutual induction on the following two inequalities.

s— -2 -2
W(h,s,0) < (£+2)2" 1(€:f 5 )(2— 2)(h +1)!

S(h,s,0) < (£+ 2)2‘*5(£ e 2)(’; i i)(h +1)!

where W (h, s, ) denotes the number of leaves of Wéz ¢y When £ >0, |Cl+1 25> 1.
From the definition of the trees, we now inductively see how the terms S(h, s, £) and
W(h,s,t) are defined:

1. ifh=0,s=1,and any £ > 0 then S(0,1,¢) = 2°

2. ifh#0ands=1then S(h,1,¢) =hS(h—1,1,0) + 2+,

3. ifh=zs—1>0and?=0then S(h,s,t) =W(h,s,£) =hS(h—1,s—1,£)+1
4. ifh=2s-1>0and/ = 1then W(h,s,l) = 2W(h,s,{—=1)+hS(h—1,s—1,£)+1
5. ifh=s—-1>0and ¢ =1 then S(h,s, ) =W(h,s,()

6. ifh>s=2and /=1 then S(h,s,t)=2W(h,s,l)+hS(h—-1,s,()

For s=1and h=0. S5(0,1,¢) = 2° from Item
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For s = 1, and h > 0. we will show that S(h,1,¢) < 2" (h + 1)!. The proof
follows from direct induction. In the base case we have h = 1 from Item [l

Since S(h,1,€) = h-S(h—1,1,0)+2"" < h-2" h1+27 = (R)2 TR+ 27 <
2 (b + 1)L,

Consider h > s—1>0 and ¢ = 0. then we get S(h,s,¢) = W(h,s,{) <2-h-
h!. Once more, we proceed by induction. We already know that for h = s = 1,
S(1,1,¢4) < 2% Tor values of h larger than 1, we have S(h,s,f) = W(h,s,l) =
h-Sh=1,5-1,0)+1<h-2-(h=1)(h=1)+1<2-h-hl

Consider h =2 1, s = 2, and ¢ =2 1. We will show by induction that for s = 2,
W(h,s,0) < (£+2)27°7 - (b + 1)

For h = 1, we show W(1,2,¢) < (¢ +2)2"' — 1.

We know by the previous case where £ =0, W(1,2,0) <2< (£ +2)2

We assume the claim holds for ¢ — 1 and proceed by induction,

4+1 1.

W(1,2,0) = 2W (1,2, - 1) + S(0,1,£) + 1
<2((e+1)2°-1)+(2) +1

/+1

<(+12" —2+2+1

= (0+2)2™ -1

For h 2 2 and s = 2, we will show W (h,s,?) < (£ + 2)2“5_1 -(h+1)h!

W(h,2,0) = 2W(h,2,6 = 1) + hS(h—1,1,£) + 1
<2(((C-1)+ 222 (h+ 1)) + hS(h - 1,1,0) + 1
<2((+1)2° (h+ D))+ (27 0) +1
<(U+1)2 b+ )2 h R+
s(+2)2 - (h+1)

f+1

/+1

/+1

In the above, we use the inequality S(h,1,¢) < 27" (h + 1)! from the case where

s=1.
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Consider h > s—1 22 and ¢ =2 1. We will show the bound W (h,s,f) < (£ +

2)2“3_1(6:822)(5 2) (h+1)! on W inductively

W(h,s,£) =2W(h,s,£—=1)+hS(h—-1,s—1,0) +1

<2((z+1)2“5‘2(€’;f2 )(h 2>(h+1)')
+h((£+2)2£+5—1<£:ig3)(?:5)}1!)+1
s(e+2)(2“3‘1{<€:f;3)+(£:fg )}(h 2>(h+1)l)

< (€+ 2)2Z+s—1<£:i ) )(h 2)(h+ 1)'

Consider h=s5—-1>0 and ¢ = 1. In this case, we have

s —

<(l+ 2)2“8(2 e 2)(’; - %)(h +1)!

S(h,5,0) = W(h,s,) < (£ + 2)2““(6 e )(h 2>(h +1)!

Consider h > s =2 and ¢ = 1. Suppose for all j < h and s < s, we have

S 0) <27 (04 2)(“552)(;_ )(J"‘l)'

S(h,s,t) =2W(h,s,£) + hS(h—1,s,/)

e = e e e

9™+ 2)(“82 )(h 2)(h+1)v+2“5(£ 2)(“52 )(Z:f>hh!

B e e T
<(0+ 2)2“3(6 e 2)(2‘ B} i)(h +1)!

Our claim about the bounds of S(k -1, s,£) follow from the fact that k = h—1. [
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9.5.2 Lifting Algorithm Using Colourful Strahler Universal Trees

Here we provide a bit-string labelling for Strahler universal Trees S(eg; o) such that
any (cg, C')-colourful tree with Strahler number at most s, and at most 2f many

leaves can be embedded into SZ’S .
(6070)

For the last time, we revisit the [bit-string order| on W = {0,1}*, and use
vocabulary from Chapter [5 that we recall here. A word w € W, if w =0 w' then
0 is a leading bit, and if w =1 - w' then 1 is a leading bit of w. All the bits in W'

defined above would be non-leading bits.

We define labelled Strahler universal tree below again to help navigate these
recursively defined trees efficiently. These labelled colourful trees jé’s and ICéS
are the W-labellings of the colourful Strahler universal trees Sé‘; o) and chz oy

respectively.
1. if C = @, and s = 1, then
get={(0""L,... 17}
2. if C # @ and s =1 then

7¢" =[] U (e 0. 957) 0 [757]

where C; = C\ {¢};

3. if |Cl|2s—-1>0and ¢ =0 then

ICéS = U (eci 0 jé’is_l) U (el)

7

and

gt = ke ]0 = U(Oci o Jo ) u(oL)

1
4. if |C|zs—-1>0and £ =2 1 then

w6 = [ T 0 987 o k6]

2

5.if |C] =s—1>0and £>1 then J.° = K&’
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6. if |C| >s=2and ¢ =1 then

a8 = [ T 0. 587) o k6 ]

]

We argue that an operator similar to the one used to navigate the above
colourful universal trees can be modified here to navigate this constructed Strahler

universal tree.

Lemma 9.5.3. The time taken to find the next node in the colourful tree Séis 18
bounded by O ((s + £)klogk).

Proof. Due to the similarity to the construction in Lemma/5.2.3] we get the following
characterisation of the set of all nodes that are not coloured with a L: all prefixes

of a k-length tuple (chz‘l, Ce WG 7Wk0ih) form nodes in the tree if:
0. ¢, #c;,ifazbshy
1. the number of bits used in all of wy, ..., wy is at most (s — 1) + ¢;

2. the number of non-empty w;s is exactly s — 1;
for each j =1,...,h < |C], in this tuple,

3. if there are less than s — 1 non-empty bit strings among wj, ...,w;, but there

are £ non-leading bits used in them, then w;q = 0;

4. if all strings wjy, ..., wy, are non-empty, then each of them has 0 as its leading
bit.

Other than this, if there is a ancestor of the node (wlcil, . ,wmcim) of the above,
then so is the sequence <W10i17 e ,me_> a leaf in the tree. Moreover, the element
<wlci1, .. ,wmcim,w;,HlJ_) is also a leaf, where w' € W and |w;n+1| </ —b, where b
denotes the number of leading bits used in wy ..., wy,.

This gives us a characterisation of Strahler universal trees that allow for easy
navigation, and a succinct encoding of nodes in the colourful tree. Using this, we
argue that with only a small polynomial factor to the size of the trees constructed,
we can obtain an effective lifting algorithm for games of bounded Strahler number.

We also modify the subroutine of computing the next sibling at a given level
in the Strahler universal trees to also compute the next sibling in our construction
of colourful Strahler universal trees. This in turn helps us compute the next node
of the tree. Observe that for a node w = (chz‘l, . ,wmcim>, such that ¢; # 1,
the tuple of bitstrings (wy,...,w,,) corresponds exactly to a node constructed in a
labelled Strahler universal tree in Chapter [4]
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o If ¢; # L, then the SNext(w) is the first child of w and is therefore the node

. - . 1
(W1Ciys - o, WmCi, ,Wms1c), Where ¢ is the minimum color in C~ \{c;,, ..., ¢ }-

— if ¢ # L, then w41 = 0" where t is obtained by finding the child of the
node in a Strahler universal tree. Intuitively, ¢ is the number of Os to
make the number of non-empty bit strings in some potential node equal
to s — 1, and the number of bits in such a node equal to (s—1) 4+ ¢. More
rigorously, ¢ is obtained by computing:

* the number bits left, denoted by b as (s —1) + £ =) " |w;|;
* the number of positions after m that can host ¢, denoted by e =
(h = (s —1))—number of w;s which are already e¢;
* the number of positions after m + 1 that cannot host an epsilon,
denoted by f=h—m—e—1;
and finally, we define t = b — f.

— alternatively, if ¢ = L, then w41 = 0" where t = £ — b where b is the

number of leading bits among wy, ..., wWy,.

e If ¢; = L, then the node w is a leaf, and we need to find a sibling of w or the
largest ancestor of w with a sibling. First, we check if there is a sibling of the
given node. This is done by finding the value t = ¢ — b, where b is the number
of leading bits among wy, ..., w,,. Later, if nextstring’ (wy,,) is defined, then we

declare SNext(w) = <wlcl-1, cel nextstringt(wm)cim>.

If such a node is 4, then we compute its next value as follows. Let p be the
largest position where the tuple {(wy, ...,w,,) has a next sibling when viewed
as a node in the Strahler universal tree. Such a p is simply found by finding

the largest p < m such that at least one of the following is not true.
1. the number of non-empty w;s is s — 1;

2. the number of bits used in all of wy,...,w, is (s = 1) + 4;

3. wy = 1’ for some j > 0 but the number of non-leading bits used in them

is £. The number of non-empty bit strings among wy, ..., w,, is £.
4. if w, = 017 for some j = 0, the number of non-leading bits used in

wi,...,wp is £, and all bit strings w,, ... ,w,, are non-empty.

We also simultaneously find the largest position g = m such that a following
c exists where c is the smallest colour larger than ¢, in ot \ {ciys - - ,ciq}. If

q = p, then we say SNext(w) = <chi17 ... ,wqc). If p > g, then we find the
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next node in the underlying Strahler universal tree at level p. Let this node
be represented by the tuple <W1,WQ ... ,wp_l,w1')>, where w]') is obtained using

the following two cases:

— If less than / non-leading bits are used in wy,...,w,, then we set w]'g to

be wpl()b so that exactly ¢ non-leading bits are used in wy,...,w, 1, w;,

— If exactly ¢ non-leading bits are used instead, then we let w;, to instead
be defined such that w, = w]'001].

I .
We now return the node (wlcil, e ,wp_lcip_l,wpc> where c is the smallest colour

larger among O \ {cips-sci, ) -

Proposition 9.5.4. Given a node in the W-labelled (cq, C)-colourful tree jé’s and
a subset of colours K € C, such that the colouring of the node is in K, the next

node larger than it, whose set of colours used is contained in K U {L} can be found

in time O((s + £)klog(k)), where k = |C U ¢g.

Proof. The proof is similar to that of Lemma We, however, give it for com-
pleteness. For any node ¢ = (w1C¢1, .. ,wmcim> we know ¢; € K. We first find
largest position p such that CoIourSet((wlcil, e ,a:scl-p>) c KJ‘, , where K+ de-
notes K U {L}. Observe that this implies ¢, € Kande  # L1

We then compute the next node to (wl%, - ,wpﬂcz-wl) instead such that
ColourSet(t) does not intersect with the set of colours C'\ K. But for the tree jé’é
constructed, consider the smallest colour ¢ € K+ \ {ci,,ciyy - - -5, } such that c is
also larger than ¢; .. The above set is non-empty since it contains 1. Hence we
just need to return (wl%, . ,wscis,wsﬂc) which is the smallest node larger than
t such that ColourSet(t) is contained in K L. This indeed takes only time linear in
the size of the encoding of a node, which is O((s + )k log(k)). O

From Theorem [9.3.4] we know that our lifting algorithm can be performed
on any tree and from Theorem [9.5.5] we know that small Strahler universal trees
exist and we know from Lemma [0.5.3 and Proposition that these trees can be

navigated effectively. Combining these results, we get the following theorem.

Theorem 9.5.5. A (cg, C)-colourful Rabin game with n wvertices m edges, of
Strahler number s, and k = |C| + 1, where s < min{[lgn], k} can be solved in space
that is O(nklognlgk) and time

5(nmk2s<|—lgnjj§ - 2)(12 : f)k') .

190



Chapter 10

Rabin games against a fair

opponent

A motivation to work on Rabin games is to solve reactive synthesis of systems based
on given high-level specifications. However in many cases, solutions to the synthesis
problem do not exist for mundane reasons. For instance, consider the case where a
machine can be synthesised as long as the input sequence is restricted to a specific
language. Alternatively, in some other case, solutions could exist if some rationality
is assumed on behalf of the environment the synthesised machine interacts with.
Indeed, the former setting where the input was restricted to LTL formulas was
considered by Chatterjee, Henzinger and Jobstmann |[CHJO0§| and the latter model
was considered in the works of Fisman, Kupferman, and Lustig [FKL10] and also
Kupferman, Perelli, and Vardi [KPV16].

One such case of inability to solve the synthesis problem could be due to the
presence of “unfair” executions of a synthesised model. In such cases, solutions to
the synthesis problem could benefit if additional fairness constraints are imposed on
its executions. In fact, with a similar motivation, this problem was recently studied
in the work of Banerjee et al. [BMM+22] where they considered Rabin games with an
additional condition of strong transition fairness |QS83| for the environment. Their
contribution was a symbolic algorithm for the above problem that took O(n"*!(k)!)
symbolic steps. However, they left open the question of finding effective enumerative
algorithms.

In this chapter, we consider Rabin games with strong transition fairness and
provide algorithms that match the running time of algorithms to solve Rabin games
(without any additional fairness conditions). We generalise our algorithms from

Chapter @]to also identify the winner in Rabin games with transition fairness [QS83,
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BMM ™ 22|, which therefore also identifies a winner of almost-sure winning conditions
of turn-based stochastic Rabin games [CdAHO5].

In a game with transition fairness, a set of edges starting from environment
vertices are marked “live”. If the game visits a source vertex of a live edge infinitely
often, Audrey must ensure that this live edge is also traversed infinitely often. In
a stochastic game, instead of a partition of the vertex set among Steven and Au-
drey, we have a tri-partition of the set of vertices between Steven, Audrey and the
remaining vertices marked “random.” When the game visits a random vertex, one
of its neighbours is chosen uniformly at random. Almost-sure winning conditions
for stochastic games are a special case of games with transition fairness: allocate all
random vertices to the environment and mark every outgoing edge from a random
vertex to be live.

We first show that the winning region of a fair Rabin game has a colourful
fair decomposition. Since colourful fair decompositions are also naturally associated
to colourful trees, we ask if one can indeed construct an algorithm that solves these
games using our universal colourful trees defined in the Chapter [0} We answer this
question positively and provide a simple progress measure lifting algorithm to solve
such games. Together with our universal colourful trees defined in the Chapter [9]
we obtain a 5(mn2(k!)1+0(1))—time and O(nklgklgn)-space algorithm for Rabin
games with transition fairness as well as for almost sure winning in turn-based
stochastic Rabin games. While there is a known reduction from Rabin games with
transition fairness to usual Rabin games with at most nk vertices, our algorithm

shaves off a k> factor from the above in the worst case.

10.1 Games with live edges

Consider a Rabin game in which a subset L of the set of Audrey’s edges (out-going
from Audrey’s vertices) are identified as live edges. A play in this game is fair with
respect to this set L of live edges if for every live edge u — v, if u is visited infinitely
often, then the edge u — v is taken infinitely often. Alternately, one can state that
for each edge, if this path visits the source of any edge in L infinitely often, then it
also visits the target of that edge infinitely often. An infinite path satisfies the fair
Rabin condition with respect to L if it is not fair with respect to L or satisfies the
Rabin condition.

A (cg, C)-colourful fair Rabin game G is defined similarly to Rabin games and
consists of an underlying (c¢q, C')-colourful Rabin game whose vertices are partitioned

V4 and Vg, belonging to Audrey and Steven, respectively, and a subset L € E of
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live edges such that the source vertex of each edge in L is owned by Audrey. A fair
Rabin game is said to be winning from a vertex for Steven if there is a positional
strategy ¢ S E of Steven such that all infinite paths starting from this vertex in
the graph obtained restricted to the set of edges o satisfy the fair Rabin condition.
One can, in polynomial time, convert a fair Rabin game to a Rabin game with a
similar set of vertices and edges (live edges become normal edges) where the winners
are preserved. Although this reduction shows that these fair Rabin games have a
positional winning strategy for Steven, it increases the number of colours in the new

Rabin game.

Proposition 10.1.1. For a (cg, C)-colourful Rabin game, with live edges L, there
is a Rabin measure into an LL-labelled (cq, Cr)-colourful tree, where the set Cp =

C U {c. | e € L}, where all infinite paths satisfy the Rabin condition.

Proof. Observe that a (cg, C')-colourful graph G with Rabin, with live edges L, can
be encoded as a (cg, Cp,)-colourful Rabin game over the same graph where the set
of colours C, = C U {c, | e € L}. For any live edge ¢ = u — v, we redefine the bad
sets and good sets of colours from G, that is, B, and G, to include ¢, in addition

to the other colours assigned to it by the game G with live edges. ]

We list two ways to find if Steven wins from a specific vertex using known

techniques.

Approach one: The above Rabin condition on a (cg,C)-colourful game with
strong transition fairness with live edges enlisted in a set L can be converted into a
(¢p, C' U L)-colourful Rabin game with no fairness conditions imposed on Audrey.

On a Rabin game with n vertices, k colours and ¢ live edges, we have an
algorithm that runs in time 5(mn2(k +t+ 1)!1+O(1)) time.

Approach two: One could use gadgets constructed in the work of Chatterjee, de
Alfaro and Henzinger [CdAHO05|] to show almost-sure winning condition for Rabin
games can be reduced to solving Rabin games without stochastic vertices. A direct
modification of their gadget would give us a method to convert a (cg, C')-colourful
Rabin game with live edges L into a (cy, C')-colourful Rabin game without fairness
and with at most O(tk+n) many vertices. This takes 5((m +tk)(n + tk:)2(k:)!1+0(1))
time from Algorithm [I0] from Theorem [G] This reduces the exponential dependence
on (k +t)! already to a k!. We do not elaborate on these gadgets, but refer a reader
to the work of Chatterjee, de Alfaro and Henzinger [CdAHO5] or to the work of
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Chatterjee, Henzinger and Jurdzinski [CHJ05] where similar gadgets are used to
find if Steven wins almost surely in stochastic Rabin and parity games, respectively.

Our main contribution is our characterisation of Rabin games with fairness
using colourful fair decomposition. This leads to a lifting algorithm for fair Rabin

games that is faster by a polynomial factor than the second approach.

10.2 Colourful fair decomposition

Following a pattern similar to Chapter [0} here we define a colourful fair decomposi-
tion and a measure for fair Rabin games, and show that these exactly characterise

games where Steven wins.

Colourful fair decomposition. Consider a (cq, C')-colourful Rabin game G with
the arena (V, E), sets of good colours {G,} and bad colours {B,} for each vertex
v € V and a set of live edges L. For a fixed positional strategy o of Steven, a (cq, C')-
colourful fair decomposition D is defined on the game G|, obtained by restricting
to the strategy edges. For a fixed o, the decomposition D of G|, is a recursive sub-
division of vertices of G into subsets of vertices that satisfies specific conditions. If
C = @, then we say D = (V) is a (¢g, C')-colourful fair decomposition all fair paths
in G|, if all fair paths from all vertices in V' visit a vertex v such that ¢y € G,,. Else,

if C and V are non empty, we say that the decomposition
D = <Aa (ClaviaDIaAl) sy (Cja V},D],AJ)>

satisfies the following conditions if there is a fixed positional Steven strategy such
that:

1. A is the set of all vertices in V such that all fair paths starting from A in G|,

visit some vertex v € V such that ¢y € Gy;
and setting G; =V \ A. Fori € {1,...,j}, we have

2. V; is a set of vertices such that there are no fair paths in G;|, which start at

a vertex in V; and visit a vertex in G; \ V; and ¢; ¢ B, for all v € V} ;

3. D;is a (¢;,C \ {¢;})-colourful fair decomposition of V; (with the same Steven

strategy o);

4. A; is the set of all vertices in G;|, such that all fair paths from A; within G;

visits some vertex in V;;
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5. Giv1 =G \ Aj;

and we have G, = @.

Instead of producing a definition with attractors in games, as we have done
for attractor decompositions as well as for colourful decompositions, we only deal
with games obtained on restriction to a strategy where all fair paths satisfy the
Rabin condition. However, if one wishes so, one could instead consider the nearly
identical definitions of colourful decompositions, only to replace Steven attractors
with a modified definition of “fair attractors” defined for Steven, and “fair traps”
defined for Audrey. But to avoid many new concepts, we restrict ourselves to paths

in strategy graphs.

A measure for live Rabin games. Consider a map A from the vertices of a
(¢g, C)-colourful game G to an L-labelled (cq, C')-colourful tree £ which contains an
additional T element. An edge u — v is said to be live consistent in a mapping A if
it satisfies the condition G, defined below and B, defined in Section [9.2

(Gy) colour(A(u)) = L and moreover, GCA(A(u), A(v)) = parent(A(u))

This intuitively says that the measure along this edge might potentially increase, but

not larger that the last descendent of its parent. We say a vertex v is live-consistent
if

e it has at least one edge that is satisfying (G, AND B), and
e every other outgoing edge satisfies (G, AND B).

For every fair infinite run that visits this live-consistent vertex infinitely often also
satisfies G, infinitely often. This is because along the live edge that is taken for this
run to be fair, the measure along this live edge decreases. Finally, we say a mapping

A is live consistent if all vertices are consistent or live consistent.

Theorem 10.2.1. Given a (cy, C')-colourful Rabin game G and a designated set

of live edges L € E then the following statements are equivalent:

1. Steven has a positional strateqy o such that all infinite paths in the restricted

game G|, satisfy the fair-Rabin condition.
2. there is a (cg, C')-colourful fair decomposition of vertices of V.

3. there is a live-consistent map \ from wvertices of G to a L-labelled (cq,C')-

colourful tree rooted at colour cy;
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Lemma 10.2.2 ((I] = [2) of Theorem [10.2.1). Given an (co, C)-colourful Rabin
graph and a set L of live edges. If all paths satisfy the Rabin condition, then there

is a (cg, C)-colourful fair decomposition.

Proof. We construct such a fair colourful decomposition by fixing the same strategy
o and constructing a decomposition inductively on the sum of the number of colours

in C and the number of vertices in G.

Base case. If C = @, then for all vertices v, B, = @. All fair paths in the
SCCs after finitely many steps must visit a vertex v such that G, = {cy}. This is
because all fair paths in G|, satisfy the Rabin condition. The (cy, C')-colourful fair

decomposition is just (V).

Induction hypothesis. For all (¢, C')-colourful Rabin games using Steven strat-
egy o, in the restricted game G|, all fair paths satisfy the Rabin condition. Since
we have fixed a strategy o, to avoid cumersome notation, we henceforth refer to the
game G|, using G itself, but require that all fair paths in G to satisfy the fair-Rabin

condition. We assume that there is a (cq, C')-colourful fair decomposition
D = <Aa (ClaviaDIaAl) sy (Cjav}aDij)>
where ¢y € B, for all v € V, and for all v € V| if ¢y € G, then v € A.

Induction step. Consider all vertices B = {v | ¢y € G,}, and let A 2 B be the
maximum set of vertices from which every fair path starting from A visits some
vertex from B. It is routine to verify that there is such a unique maximum set.

Consider the subgame G; induced by the set of vertices V' \ A. This is a
subgraph of G also satisfies the property that all vertices have an outgoing edge.
More importantly, all fair paths in it satisfy the Rabin condition as these paths are
also fair paths in the original graph. Furthermore, there are no vertices v such that
co € G, orcy €B, forveW)\A.

Consider an SCC decomposition of the graph induced by V' \ A. Consider a
bottom SCC (an SCC from which there is no path to other maximal SCCs) V; of the
graph induced by V' \ A. Consider a path 7 such that the set of all vertices visited
by m infinitely often is exactly V;. Clearly, there is no unfair path from V; to the
subgame Gy \ Vi, since there is no path out of V;. More specifically, the path that
visits all the edges within V) infinitely often satisfies the fair Rabin condition. This
implies that there is some colour ¢; such that ¢; ¢ B, for all v € V] and ¢; € G, for

some v € V.
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Therefore, by induction, there is a (¢1, C'\ {¢1})-colourful fair decomposition
of V1, say D;. Let A; denote the maximum set of vertices in V' \ A from which all
fair paths lead to a vertex in V.

Now consider the game Gy = (V' \ A) \ 41, which has fewer vertices and is a
subgraph of G and where again there are no vertices v such that ¢y € G, or ¢y € B,
for v € Gy, there must be a (cg, C')-colourful fair decomposition.

Let this fair decomposition be:
D’ = <®7 (027 V27D27 AQ) PR (cj7 V]vD]7Aj)>

Observe that there are no vertices v where ¢y is a good colour or a bad colour for
v. Therefore, the top set of vertices is @, due to our induction hypothesis.

We claim that the colourful fair decomposition
D = <A7 (Cb Vvlvplv Al) ) (027 ‘/27D27A2) Yty (Cj7 ‘/j?Djv A]))

constructed from the sets defined above is a (cg, C')-colourful decomposition.
It is routine to verify that the decomposition constructed satisfies all the

properties of a colourful fair decomposition by construction. O

Lemma 10.2.3 (([2 = [3) of Theorem[10.2.1)). Given a (co, C')-colourful fair Rabin
graph G with live edges L, and a (cq, C)-colourful fair decomposition of it, there is
an live-consistent X from the vertices of such a game to a L-labelled (cy, C')-colourful
tree L.

Proof. We follow suite of Lemma in this proof, and combine it with a fair
distance function. As in the previous proof, we first fix a positional strategy for
Steven that ensures that he has a Steven decomposition D on the restricted game
G|,. Note that it is enough to treat the game as if all the vertices now belong to
Audrey and then show that the mapping A (that we shall define below) is a live-
consistent mapping. Henceforth, we assume that G is the game obtained from fixing
a Steven strategy.

To define such a mapping, we in turn use a fair-distance function for a
fixed set of target vertices T', written Dp, and sometime just D when T is clear
from context. Intuitively, such a function assigns to all vertices that can eventually
reach 7', a number natural number which indicates a modified distance in the game
G from the target set. However, note that unlike a distance function defined for
Lemma [9.2.3] this function does not decrease along all edges. In fact, it might

increase along an edge of G, if it has a live edge from the same vertex along which it
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decreases. Let A be the set of vertices in V such that all fair paths in G eventually
visits T'. More formally, this function Dy maps the set of vertices A of the fair game
G, to a natural number from {0,1,...,|A| — 1} such that

e if v € T, then Dp(v) = 0;
e if there are no live edges from v, then Dp(v) > Dy(w) for all v — w;
e if there is a live edge from v, then Dy (v) > Dy(w) for some live edge v — w.

We prove the existence of such a function D7 in Proposition after the proof

of this lemma.

Suppose C = @. In this case, our (cg, @)-colourful fair decomposition D = (V).
Let t denote the length of the longest path in G which does not visit a vertex for which
¢p is a good colour. Then we consider an IL-labelled (cq, C')-colourful tree £, which
consists of ¢ leaves, all denoted by {{a;L),...,{a; L)}, where oy < ag < -+ < ay,
each ¢;, an element of N.

We construct the map A that assigns all vertices v € V such that ¢y € G,
to the root of a labelled (cy, C')-colourful tree denoted by (). For vertices v where
cop ¢ G, we define Dy (v) as the fair-distance function to the set of vertices T' = {v €
V| ¢ € G,}. We then define A for each v € V' \ T to be (a; L) where Dp(v) = i.

We verify that such a mapping satisfies the condition for it to be live-
consistent. Since B, = @ for all v, all the vertices satisfy B trivially. Observe
that since w is a child of the root, all edges out of w are live-consistent. We only
need to show that the vertex w itself is live-consistent. If there are no fair edges,
then the arguments are similar to Lemma [0.2.3] If there is a live edge, showing
vertex u is live consistent is routine and follows from the definition of fair distance

and live consistent, and hence we omit it.

Suppose C # @. In this case, we have a (cg, C')-colourful fair decomposition and
D= (A) (Clv ‘/1)D17A1)7 LR (Cju ‘/japjaAj)> .

Inductively, for each V;, which has a (¢;, C'\ {¢;})-colourful fair decomposition, we
have a mapping ); to an L-labelled (¢;, C \ {c;})-colourful tree £;.
We give a Rabin measure A into the colourful tree 7 defined as the set

J

(a1, 1)} { o 0 £ 0l 1) (ad )

i=1
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of nodes where ay are elements from L such that if i; < iy, then o' < ozZ? and

if 1 < £5, then azl < 0422. We define A(u) from a fair decomposition D above as
follows. The tree is similar to the ones in Fig.

If u € A and ¢ € Gy, then A(u) = ().

Ifue A\{veA|c € G,}, wedefine \(u) = <a2J_> where Dg(u) = £, with
Dp defined as the fair-distance function to the target set B = {v | ¢y € G, }.

For vertices u € V;, we define A\(u) = aéci © \;(u), where ); is obtained

inductively.

For vertices u € A; \ V;, we define A\(u) = (aéJ.) where Dy, (u) = £, where Dy,
is again defined as in Proposition [10.2.4] with target set V;.

We show that the A defined above satisfies the conditions required for it to

be a live-consistent Rabin measure. To prove live consistency, we need to show that

each vertex in the graph G is consistent or live consistent.

For the rest of the proof, we sometimes write Ay to also refer to A and V;

to refer to the set {v € A | ¢y € G,}. Let G; be defined similarly to the definition
of a fair decomposition, where G; = V' \ A4, and G;.1 = G; \ A;. We moreover define

Go = V. The following observation about the map A defined is useful to show that

it is indeed a live-consistent map.

($) Fori € {0,1,...,7}, any vertex in u € V'\ G; is such that A(u) < A(v)
for any v € G;.

If u e Aand ¢y € Gy, then AN(u) = () and for all edges u — v satisfies G;.

Since the root is coloured with ¢y, such edges also satisfy B since B, = @.

If u € A and ¢y ¢ G,, then since A\(u) = <ag> where ¢ is the value given by
the fair distance function (Proposition , either there are no live edges
and instead all edges u — v satisfies G, or there is at least one live edge and
it satisfies G, whilst all the other edges satisfy G;. Since the root is coloured

with ¢g, all edges from u also satisfies B since B, = @.

Ifue A;\V;, for i € {0,1,...,75}, and suppose A(u) = <aél> we show that u
satisfies G, or Gy, and at least one live edge satisfies G,. Since w is mapped to
a child of the root, all edges from it satisfy G, trivially. All we are left to show
is that at least one edge satisfies G, whenever there is a fair edge from u. But

this follows from the definition of A, which was derived from the fair-distance
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function, with only minor modifications needed from the similar case in the

proof of Lemma [9.2.3

That vertex u also satisfies B because the only ancestor of A(u) is (), and it

is coloured with ¢y, and ¢y ¢ B, for any v, and therefore specifically ¢y ¢ B,,.

o If u € V; for i € {1,...,7}, for all edges u — v, vertex v is either in V; or
in V' '\ G;. This is because, due to the definition of a fair decomposition, V;
is a set of vertices which has no fair path to G; \ V;. If v € V' \ G;, we know
that A(u) > A(v) from ($), and thus G, is satisfied. On the other hand,
if v € V;, then \;(u) and X\;(v) are both defined. If edge u — v satisfies
G, in A;, then it continues to satisfy G; in A. In the case where edge u — v
satisfies G, in \;, that is, A\;(u) > \;(v), then it satisfies G, in A as well. Finally,
again for Gy, the same holds inductively. We end the proof by remarking that
ColourSet(A(u)) = ColourSet(\;(u)) U {¢;}. Thus, B is also satisfied by the
edge u — v. O

Proposition 10.2.4. Consider a graph G with live edges L, and a target set T'. Let
A be a set of vertices such that all fair paths that start from A, stay in A and lead to a
vertex in T, then there is a function Dy from all vertices of a A to {0,1,...,|A| -1}
such that Dy (u)

e ifveT, Dp(u)=0;

e if there are no live edges from v, then Dp(u) > Dp(v) for all u — v;

e if there is a live edge from u, Dr(u) > Dr(v) for some live edge u — v.
Proof. Consider the set consisting of all functions D from A to NU {oo} that satisfy

e ifveT, D(u)=0;

e if there are no live edges from v, then D(u) > D(v) for all u — v;

e if there is a live edge from u, D(u) > D(v) for some live edge u — v.

It can be verified that this set of functions is closed under point-wise minimum.
Therefore, this set indeed has a smallest element. Consider the smallest such func-
tion D that satisfies the above condition. We claim indeed that the smallest func-

tion can be defined as

0 ifveT
Dr(u) = {max{D7(v) | u = v € E} if there are no live edges from v

min{Dr(v) | u > v € L} if there is some live edge from v.
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Indeed, it is clear that any function that does not satisfy the above condition at
some vertex can be modified locally to produce a smaller function that does satisfy
this condition at a specific vertex. First we show that such a function D7 maps no
vertex to oo if all fair paths lead to T'.

Assume to the contrary that the set of all vertices labelled above with oo,
denoted by the set U is non-empty. For each vertex u € U, if there are no outgoing
live edges from u, then there is some edge u — v such that v € U. If there are live
edges, all outgoing live edges also lead to U, since Dy (u) = min{Dr(v) | u = v € L}.

Hence any path in U € A can be extended infinitely to remain in U in such
a way that is fair, contradicting our assumption that all fair paths in A lead to T

The minimality of Dy also ensures that the range of D7 does not exceed |A|—1. O

Lemma 10.2.5 ({3 = [1)) of Theorem [10.2.1). Given a (co, C')-colourful Rabin

graph G with a designated set of live edges L, if there is a live-consistent X from
vertices of G to a L-labelled (cqy, C')-colourful tree then all infinite paths satisfy the

fair Rabin condition.

Proof. We need to show that all infinite path that are fair also satisfies the Rabin
condition in this graph where each vertex is live-consistent or consistent. The rest
of the proof is similar to the proof of Lemma [9.2.6] with modifications taken into
account for fairness.

For an infinite fair path p = vy = v;1 = v9 = ...v; = v;41 — ... consider
A(p), the infinite sequence tg,t1,... where each t; = A(v;). We define t,,;, as the
smallest element that occurs infinitely often among the sequence consisting of the
elements ¢; and ¢ = colour(tyi,). We show that this fair run satisfies the Rabin

condition with the following three items.
(a) c# L1;

(b) ¢ € G, for infinitely many v;s;

(¢c) ¢ ¢ B, for all but finitely many v;s.

We will prove the items in Proposition for the path p, which will require slight
changes in the argument due to the newly introduced G, condition. That is, we will

prove tyiy, is
1. the largest common ancestor of ¢; and t;,1 infinitely often

2. an ancestor of all but finitely many ¢;s.

201



Notice that assuming that the above two items hold for t;,, Item [a] follows from
tmin being an ancestor, and Item [b] and Item [d follow directly from Item [I] and
Item [2| respectively. To prove Item [I] and Item [2] we start by recalling that for any

v; = v;j41 one of the following conditions is true, since all vertices are consistent:
(1) A(v;) > AM(vi+1) (the edge satisfies G, );
(i1) A(wv;) = GCA(A(v;), A(vi41)) (the edge satisfies G));

(iii) parent(A(v;)) = GCA(M(v;), A(v;4+1)), but there is some a v; - w € L such
that A(v;) > A(w) (this edge satisfies G, but some other live-edge out of it

however satisfies G, );

Let p be the position after which all k& > p, the node ¢, are such that ¢, occurs

infinitely often in p. Let this position p be chosen moreover so that t, = t,.

1. For any 7 with A(v;) = tyin, observe that the edge (v;,v;41) cannot satisfy
condition , since tin is the smallest element occurring infinitely often and
therefore A(v;) ¥ A(vi+1). This edge cannot satisfy condition (ii), because
since the infinite path is fair, this would imply there exists some outgoing
edge of v; which satisfies G, which is taken infinitely often, contradicting the
minimality of ¢,;,. Therefore, on path p, an edge (v;, v;41) with A(v;) = tmin
satisfying G, should be taken infinitely often. Item [I|directly follows from this

argument.

2. We argue that ¢, is an ancestor of all ¢; with j = p. Let the next occurrence of
tmin be at t,. More formally, we show ¢, = GCA(t,,t,) = GCA(t,, tp41) = -+ =
GCA(tp,t,). We proceed by induction. In the base case GCA(t,,t,) is trivially
t,. We assume that ¢, is an ancestor of t,,;, and show ¢, is also an ancestor
of t,4;41. For brevity, we use j = p + 4. For any two consecutive t;, t;41,
either ¢; > ¢, (by condition ), t; is an ancestor of t;,1 (by condition or
parent(t;) is an ancestor of t;,1 (by condition ) In the first two cases, we
get t, is an ancestor of ¢, following the proof of Proposition In the
last case, we observe that ¢; # ¢, = t;, from the minimality of ¢,,;, as shown
in the proof of item |1, Hence ¢, is an ancestor of the parent of ;. Since the
parent of ¢; is an ancestor of ¢;,; from condition , any other ancestor of
the parent of ¢; is an ancestor of ¢;,; as well. Thus we get t,, = GCA(t,,;4+1)-

This proves our claim and item [2] follows directly. O
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10.3 A lifting algorithm for fair Rabin games

We show that the lifting algorithm described in Chapter [9] can be modified to
accommodate edges with strong fairness condition on Audrey’s vertices. The mod-
ifications are minimal and require only one additional condition for a lift operator

to perform.

Lift operator for Rabin games with liveness. We extend the definition of the
lift operator in the setting of games with live edges. Consider a mapping A from
vertices of a game to LT, an LL-labelled (cg, C)-colourful tree rooted at colour ¢
with an additional T element, i.e. cr.

For an edge ¢ = u — v in the game G, we define fairlift,(v) to be the smallest
element t € L U {T} at least as large as A(v) in the mapping A[v := t] and such
that v is consistent or live-consistent.

LiftFair, to be a function from the set of all maps from V to LU{T} to itself
such that

Au) ifu+ov
LiftFair,(A\)(u) =
fairlift (v) u=v

Proposition 10.3.1. The function LiftFair, s inflationary and monotone.

By definition this operation is inflationary, since LiftFair, on a mapping A is
equal at all u # v and at least as large as the A\(v) at v.

To show that the above function is monotonic, we show that for two mappings
that satisfy A; E Ay, we also have LiftFair,(\;) E LiftFair,(\y). This follows closely
from the definition of fairlift.

Since the operator LiftFair, is both inflationary and monotonic, the simul-
taneous fixpoint of this operator exists, and moreover any maximal chain obtained
by application of these operators on A reaches the least simultaneous fixpoint larger
than .

To conclude that a lifting algorithm would take time O(mk|L|lgnlgk), we
only need to show that fairlifty(v) can be computed in time O(deg(v)klgnlgk),
which we do so later in Lemma But we state our main theorem, which we

obtain from Theorem [10.2.1] Lemma [10.3.2| and Theorem

Theorem H. Finding the winner in a fair Rabin game can be determined in
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O(nklognlogk) space and time

)

We finally show the building block of the fair lifting operator can be imple-
mented in time (deg(v)kllgk) below.

Lemma 10.3.2.  Given a mapping X\, a (cg,C)-colourful Rabin game G with n
vertices, along with a vertexr v, computing fairlifty(v) takes time O(deg(v)kllgk)
with k colours and £ = [lgn].

Proof. Suppose there are no live edges from a vertex v, observe that LiftFair, = Lift,,
defined in Section Otherwise if v is an Audrey vertex that has live outgoing
edges, we want to show how to calculate fairlifty(v), the minimum value larger than
A(v) that makes v consistent, or live-consistent with respect to A. To do this, we will
get the minimum of two values, the one obtained just from lift and the other from
fairlift. Since computing max,_,{lift) (v, u)} already takes the claimed running time
from Lemma [9.4.9] setting v to it in A would make it consistent and we dedicate to
the rest of the proof to finding the time taken to compute the other where setting
v to it makes the map live-consistent.

Suppose uq,us,...,uq are the out-neighbours of the vertex v, such that
AMup) < AMug) < -+ < AMug). We assume strict inequality, because it is enough
to consider only one among two edges with the same value. We assume that v is
not already live-consistent with respect to .

Recall that our objective is to find a node larger than A(v), such that mapping
v to this node would make v live-consistent. Moreover, at least one edge needs to
satisfy G, for v to be live-consistent.

Let ¢ be the smallest index such that v — wu; is live.

1. If AM(v) = A(u;), then there are no outgoing edges from v that satisfy G..
Therefore to make v live-consistent, it must take a value at least as large as

the next element of A(u;).

2. If AM(v) > A(u;), the live-edge v — u; already satisfies G, with respect to A and
any increase in the value of v would satisfy G, too. In this case, we find the

largest j such that A(v) = A(u;). Since we assumed v is not consistent, j < d.

For case [I] above, we set m to be 7 and for case [2, we let m to be j. Since v
must be set to a value larger than A(u;) for item [1) and A(v) for item [2, we declare
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t = A(u,,) in the former and ¢ = A\(v) in the latter case. For both cases, we have
AMup) <o+ < Mup) 2t < AMUpma1) < Mug).

Let ty,...,tq—, correspond to the sequence A(t;,41),..., A(ug). The prob-
lem can now be solved in O(deg(v)k¢1g k), thanks to Proposition[10.3.3] We remark
that the reason for ¢ in the third item being strictly smaller than p is that if in-
deed t* = ty, then all edges must satisfy G, and this case is similar to computing
lift\(v). Proving the proposition in the following, we conclude that fairlifty(v) can
be computed in O(deg(v)kl1gk). O

Proposition 10.3.3. In the n-universal (co, C')-colourful tree Cé constructed (pre-
ceding Lemma and given subset of colours B, and a sequencet <t; < «++ <t,,

finding the smallest such node t*, if one exists, that satisfies:
o t" >t
e coloured with L ;
e ColourSet(t*) n B, = @;

e assuming ty = t, there is some 0 < ¢ < p such that t* > to,...,t; and the

parent of t* is an ancestor of each of tisq,. .. s
takes time proportional to O(pkllgk).

Proof. We use the following property of the constructed universal tree Eé. For any

node in the tree, if its colour is not L, then it has a child coloured with L. Moreover,

any element (wy¢;,, ... ,wmcij) coloured with L, i.e., ¢, = 1 is larger than the above
node but i, # 1.
Let t' be the largest common ancestor of vertices tq,...,t,. The following

are the exhaustive list of cases to consider.

o Ift > t', we get can deduce from Propositionthat tq is a strict descendant
of t which in turn is a strict is a descendent of ¢ . Here, if CoIourSet(t')r‘le * @,
then no such ¢* exists. If on the other hand CoIourSet(t') N B, = @, then t* is
the smallest child of ¢' that is larger than ¢ coloured with L. We remark that
such a t* exists, because we can show by Proposition that t is a strict

ancestor of ;.

e If t < ¢ and let { be a common ancestor of ¢ and ¢. We list all the descendants
of t that are also ancestors of the largest of the input vertices tp. Let these be

. s 0,1
inorder :t=1¢ <t <-o-<t‘1=tp,
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Since we want colour(t*) N B, = @, we want colour(parent(t*)) n B, = @.
Notice that the parent of t* is among the sequence <t <<t

Lt

For each of these nodes ¢/ among to, . , in this order, we perform the

following checks:

—Is colour(tj) N B, = @? If not, we declare that no such t* exists with any

other 77 as a parent.

— Tind smallest child of # coloured with L. Except in the case of to, where
we find smallest child of £° coloured with L and is larger than t, if one

exists. We declare it say ti.

— We return the smallest such ti found.

This computation as shown above has three steps. Firstly, finding the least common
ancestor of p nodes. Secondly, we find next child of certain nodes coloured with L.
Finally we take the minimum of at most k nodes. The first of these computations is
the costliest and takes time O(pkflog k). The next node that is coloured with L is
just a simple version of nextec defined for the tree, where C' = @ and therefore can
be computed in time O(kflogk). We compare and take minimum of nodes, which
does not take more than time O(pkflogk) if we compute the minimum on-the-fly.
Moreover, since the vertices for which we are computing next is an increasing chain
of tuples, we can implement the above in time proportional to O(pkflogk). We
remark however that this runtime assumes that we compute the common ancestors
and required nodes once and store it for easy access to avoid an extra factor of p to

our computation costs. O

10.4 Almost-sure winning stochastic Rabin games

Stochastic Rabin games are two player games with some added probabilistic states
introduced in the game. The game arena is still a (cg, C')-colourful Rabin graph.
However, the vertices are partitioned into three sets Vy, Vg and Vi. The partition
Vg intuitively corresponds to stochastic choices, where each edge is chosen uniformly
at random.

We say that a positional strategy o is almost-surely winning if the measure
of all the paths in the Markov decision process G|, obtained satisfying the Rabin
condition is 1. Although maximising the exact probability of winning in a stochastic
Rabin game (maximising the measure of all paths obeying a strategy and satisfying
the Rabin condition) might require non-positional strategies, it was shown in the

work of Chatterjee, Henzinger and Jurdzinski |[CHJ05] for stochastic parity games,
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and later generalised in the work of Chatterjee, de Alfaro and Henzinger [CdAHO5]
to stochastic Rabin games that positional strategies are enough for Steven to ensure
an almost-sure winning play (winning with probability 1). In their work, Chatterjee,
de Alfaro and Henzinger [CdAHO5|] gave constructions that modify any stochastic
Rabin game with at most n vertices into a Rabin game with O(n+ks) many vertices
where there are no vertices belonging to the random player, and the number of

colours remains the same.

Corollary 10.4.0.1. Deciding if Steven almost-surely wins a stochastic Rabin game

5<mnk2k! min {n2k, (ﬂgkn_-l -I k)})

and O(nklognlogk) space.

takes time

The proof of the above corollary follows from the fact that a stochastic Rabin
game can be turned into a Rabin game under strong transition fairness by declaring
the random player vertices in the first one as Audrey vertices in the second, and
turning all outgoing edges of random player vertices to live edges. The almost-sure
winning region of Steven in the first game is equivalent to the winning region of
Steven in the second.

We remark that a similar approach also gives a progress measure based al-
gorithm parameterised by trees also for fair parity games, defined analogously to
fair Rabin games. This was a model considered in the recent work of Saglam and
Schmuck [SS23], where they modify McNaughton- Zielonka’s algorithm to solve
such games. Our result for fair Rabin games can also be adapted to solve fair parity
games using a progress measure algorithm by substituting our colourful universal

trees instead with lJurdzinski-l.azi¢ universal trees.
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Chapter 11

Lower bounds for solving Rabin

games

Using our combinatorial construction of colourful universal trees, which accommo-
dates any colourful decompositions, we significantly reduced our running time as
well as state space complexity of algorithms to solve Rabin games in Chapter [9]
Our algorithm took time linear in 11°Y and a polynomial in n whilst requiring only
O(nk) space. But one might wonder if this algorithm could be further improved,
with this dependence on k! reduced to at least a ok However, the work of Calude,
Jain, Khoussainov, Li, and Stephan [C.JK"22] swiftly put an end to such hopes due
to their complexity lower bounds subject to Exponential Time Hypothesis (ETH,
the assumption that there exists § > 0 such that 3SAT problem cannot be solved
in time (9(25n)) for Rabin games. They proved that assuming ETH, there are no

olklogk) O {41 Rabin games, essentially giving a

algorithms with running time 2
negative answer to our question. This reduction provided by Calude et al. starts
with the DOMINATING SET problem and is rather involved.

We provide a simple reduction that reproves the tight complexity lower bound
for solving Rabin games that follows from the work of Calude et al. More precisely,
we prove that assuming ETH, there is no algorithm for this problem with running

time 2o(klogk) . n(?(l)

. The same lower bound for (the more general) Muller games
follows as a direct corollary. By a minor twist of our construction, we can also
reprove the lower bound for d-dimensional parity games reported by Calude et al.
These games were studied by Chatterjee, Henzinger and Piterman [CHP07], and
are a generalisation of parity games to different dimensions, therefore also known as
generalised parity games.

We believe that our reduction for Rabin games is significantly simpler and
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more transparent than that of Calude et al. but more importantly, it gives a better
insight into the origin of the 9ok1ogk) ¢ ctor in the complexity of the problem.
Analysing our algorithms from Chapter [9] this factor stems from considering all
possible permutations of the k colours involved in the winning condition. In our
reduction, those permutations form the space of potential solutions of a carefully
chosen pivot problem —PERMUTATION SAT, a special case of a temporal constraint

satisfaction problem— which we discuss below.

Temporal CSPs and Permutation SAT. A constraint satisfaction problem
(CSP) is the problem of deciding if there exists a variable assignment that satisfies
a given set of constraints. Temporal problems is a rich family of CSPs that model
planning various events on a timeline. In a basic form, every variable corresponds
to an event that needs to be scheduled at some point of time and constraints speak
about some events being in specific order (e.g., one preceding another), at the same
time, or at different times. This is usually modelled with Q as the domain and con-
straints having access to predicates <, <, =, and #. A P vs NP dichotomy for finite

languages within this formalism has been provided by Bodirsky and Kara [BK10].

Exponential Time Hypothesis. The Exponential Time Hypothesis is a com-
plexity assumption introduced by Impagliazzo, Paturi and Zane [IPZ01] that postu-
lates the following: there exists § > 0 such that the 3-SAT problem cannot be solved
in time (9(25n), where n is the number of variables of the input formula. We refer
the reader to the book by Cygan et al. [CFK+15, Chapter 14] for an introduction

to the applications of ETH for lower bounds within parameterized complexity.

Generalised parity objective. Generalised parity games were first considered
in the work of Chatterjee, Henzinger, and Piterman [CHP07]. In a d-dimensional
k-parity condition, each vertex is labelled with a d-dimensional vector of integers
from {1,...,k}. An infinite play satisfies this objective for Steven if and only if
there is some coordinate such that the highest number that occurs infinitely often

at this coordinate is even. Audrey wins otherwise.

11.1 Permutation SAT

Fix integers a = 2 and S = 1 and let X be a finite set of real-valued variables.
An a-literal is a predicate of the form z; < 29 < ... < x4 (being a shorthand for

(r1 < 23) A (g < 23) A ... A (To11 < Ty)) for some 2 < o' < a and variables
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Z1,T9,...,Ts belonging to X; a literal is a 2-literal (i.e., a predicate of the form
21 < 22). An («, 8)-clause is a disjunction of at most § a-literals, and an (a, 3)-
formula is a conjunction of («, B)-literals. By [-clauses and S-formulas we mean
(2, B)-clauses and (2, 3)-formulas, respectively.

If ¢ is a formula with variable set X, then for a permutation 7 of X we define
the satisfaction of (literals and clauses of) ¢ by 7 in the obvious manner. In the
(a, B)-PERMUTATION SAT problem we are given an («, §)-formula ¢ and the task
is to decide whether there exists a permutation of the variables of ¢ that satisfies ¢.
B-PERMUTATION SAT is a shorthand for (2, 3)-PERMUTATION SAT.

In this section we prove the following hardness result.

Theorem 11.1.1. Assuming ETH, there is no algorithm for 4-PERMUTATION SAT

o(klogk) nO(l)

that would work in time 2 , where k is the number of variables and n

s the number of clauses.

To prove Theorem [11.1.1| we use the problem k X k-CLIQUE considered by
Lokshtanov, Marx, and Saurabh [LMSI§|. They showed that, unless ETH fails, this
problem cannot be solved in 9ok108 k) _time. We first define & x k-CLIQUE below, and
then reduce k X k-CLIQUE to 4-PERMUTATION SAT.

An instance of the k X k-CLIQUE problem is an undirected graph G with the
vertex set {1,...,k} x {1,...,k} (that we can represent as a grid). This graph G is
a positive instance of k£ X k-CLIQUE if there are k vertices chosen such that there is
exactly one vertex from each row of the grid that forms a k-clique, that is, a k-clique

in which no two vertices share the same first component.

Theorem 11.1.2 ([LMSIS8| Theorem 2.4]). Assuming ETH, there is no golklogh)

time algorithm for k X k-CLIQUE.

The reduction. We now reduce k£ X k-CLIQUE to 4-PERMUTATION SAT. Let G
be an instance of k X k-CLIQUE. Given G, we construct a 4-formula ¢g over variable
set X :=={x1,..., Tk, The1,Y1,---, Yk} as follows

Recall that the vertices of the graph G are of the form (7,j) for i,j €
{1,...,k}. We say that vertex (7,7) is in the ™ vow and jth column. To con-

struct ¢g, we first write the following 3k many 1-clauses:

T1<Z2, T2<I3 ..., Tk < Tk,
1 <Y1, T1<Y2, ..., T1<UYg
Y1 < Tr+1, Y2 < Tg+ly, -5 Yk < Tg+1
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Figure 11.1: The construction in Section

The disjunction of these clauses ensures that in any permutation satisfying ¢g, the
variables xq,...,T;41 are ordered exactly in this way, while variables yq,...,y; are
sandwiched between z; and xj1-

Next, we introduce clauses that restrict the placement of variables yq, ...,y
within the chain x7 < x5 < ... < 2g4+1. The intention is the following: placing y;
between z; and x;,1 corresponds to choosing the vertex (7, j) to the clique. Hence, it
remains to introduce clauses ensuring that vertices chosen in this way in consecutive
rows are pairwise adjacent. To this end, for every pair (a,b), (¢,d) of vertices non-

adjacent in G, we construct the 4-clause

(g < x0) V (Tgs1 <) V (Wa < ) V (Zes1 < Ya)-

Note that logically, this 4-clause is equivalent to

- ((xa <Y < :Ea+1) A (Ic <Yqg < $c+1)) .

Thus, intuitively speaking, the 4-clause forbids simultaneously choosing (a,b) as
well as (¢, d) to form a clique.

Consider the clique in Fig. It corresponds to the permutation x; < y4 <
Tg < Yyp < Y3 < x3 < x4 < Yy < x5 (with y; and y3 possibly swapped). Note that
the vertex (2,2) is not chosen in the clique. The dashed non-edge ((4,3),(3,4))
is disallowed by the clause = ((z4 < y3 < x5) A (23 < y4 < x4)) which ensures if y,
appears between x3 and x4, then y3 does not appear between x4 and x5. This
concludes the construction of the formula ¢g. It remains to verify the correctness

of the reduction.

Lemma 11.1.3. The graph G admits a k-clique with one vertex from each row if

and only if ¢g is satisfiable.

Proof. First suppose G contains a k-clique K = {(1,b1),...,(k,b;)}. Consider any
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permutation 7 of X such that
® 1 <I9<:++<xp < Ty, and
o xp, <y <xp,41, forall j € {1,... k}.

(Note that 7 is not defined uniquely, the relative placement of y; and y; can be
arbitrary whenever b; = by.) It can be easily seen that K being a clique, implies
that all clauses in ¢g are satisfied. The 1-clauses are satisfied trivially, while every
4-clause constructed for a non-adjacent (b,a), (d,c) is satisfied because (b,a) and
(d, ¢) cannot simultaneously belong to K.

Suppose now that there is an ordering of X that satisfies ¢g. Clearly, it
must be the case that x1 < x5 < +++ < x}, < T}41. Further, for every i € {1,...,k}
we have x1 < y; < xp41, hence there exists j; such that z;, < y; < xj,11. We let
K = {(1,5;):1 € {1,...,k}}; note that K contains one vertex from each row. We
claim that K is a clique in G. Indeed, since in ¢g there is a clause disallowing that
((zg < yp < Tgs1) A (T < yg < Tey1)) whenever there is no edge between (a,b) and

(¢,d), all vertices of K must be pairwise adjacent. O

This concludes the proof of Theorem [I1.1.1] We remark that establishing the
complexity of 2- and 3-PERMUTATION SAT remains an interesting and challenging
open problem. Eriksson, in his MSc thesis [Eril9], shows that 2-PERMUTATION SAT
can be solved in time ((/2:/2)!)2 . (k:+n)o(1), which gives roughly a o2 multiplicative

improvement over the naive algorithm.

11.2 Lower bound for Rabin games

Finally, in this section, we prove the main result of this chapter, stated as Theorem [I|

below.

Theorem 1 ([CJK+22]). Assuming the Exponential Time Hypothesis, there is

no algorithm that solves Rabin games with n vertices and with k colours in time
2o(klogk‘) . nO(l)

As mentioned before, we reduce from 4-PERMUTATION SAT.

The reduction. Let ¢ = C;ACyA---AC,, be an instance of 4-PERMUTATION SAT
over k variables {y1,...,yi}, where C1,...,C,, are 4-clauses. We construct a (cq, C')-
colourful game G for C' = {cy,...,c,} such that there is a strategy for Steven iff ¢

is satisfiable.
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G:{(’l} G:{Cz}

C /\| |
T < Xo

1 < $3| Ty Sy, 1 <N,
- Nt |x2<xn |x2<xn
Ca

Tp—1<T

Ty 1<Tg Tp—-1<T3

Tn < 1

Ty < T2

C‘"L

Figure 11.2: The construction in Section m

We first define the game graph G; see Figure There is an initial vertex
A, as well as vertices [C1],...,[C,,], one for each of the m 4-clauses in ¢. Further,
for each possible literal z; < x;, where i,j € {1,...,k} and i # j, there is a vertex
[2; < x;]. Vertex A belongs to Audrey, while all other vertices belong to Steven.

The intention is that whenever Audrey moves the token currently placed at
A, she chooses a clause that she wishes to see satisfied. To facilitate this, we add
edges A — [Cy] for all £ € {1,...,m}. Once the token is at a vertex [Cy], Steven
needs to respond with a literal present in Cj;; the intention is that should be a literal
true in C;. Therefore, for every clause C; and literal x; < x; present in C;, we add
the edge [C;] = [z; < x;]. Finally, to allow Audrey checking further clauses, we
add edges back to A: for every literal z; < x;, there is an edge [x; < z;] = A.

Next, we define the good and bad colours constituting the winning condition.
For each vertex v not of the form [z; < x;], we declare G, as well as B, to be empty,

but for vertices [z; < x;], we set

Gle<a;1 ={cj} and  Bpg<;) = {ci}

Before we proceed to the formal verification of the correctness of the reduc-
tion, let us give some intuition. It is easy to see that, on the third turn, the token is
placed at the vertex A. At each such moment, Audrey, in turn, chooses to move the
token to any vertex corresponding to a clause Cy, with the intention of challenging
Steven about the satisfaction of C/,. Then Steven has to declare the literal that
satisfies Cy. If Steven tries to “cheat” by picking literals that cannot be extended to

a full ordering of the variables, then the winning condition is designed so that the
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play will be losing for him. Consider the illustration in Fig. where for example,
¢ of 4-PERMUTATION SAT which consists of m clauses such that the clause Cj is
(1 < 24) V (9 < x1) V (22 < 23) V (2, < 22) and C; has clause (z7 < z3) only.
Vertices that have c; or ¢y as good colours are highlighted using blue and yellow,
respectively, and vertices with ¢y or ¢y colours as bad colours are again highlighted
using blue and yellow, but with wavy lines added. Suppose Steven picks the vertices
corresponding to the clause (25 < x1) from C3 and (21 < z3) from Cj, then he loses
the game, since Audrey would ensure both vertices [z < z1] and [x1 < 2] are seen
infiniteley often. But observe that for both blue and red (¢; and ¢3), these vertices

have both the colours as bad colours.

Lemma 11.2.1. The instance ¢ of 4-PERMUTATION SAT is satisfiable if and only

if Steven has a winning strategy in the constructed Rabin game.

Proof. First suppose ¢ is satisfiable, therefore consider a satisfying permutation .
This gives rise to a (positional) winning strategy for Steven [EJ88| [EJ99] such that
in this Steven strategy, for each vertex [Cy], there is an edge to the vertex [z; < ;]
that corresponds to a literal of Cy that is satisfied in permutation 7. Consider now
any infinite play p for the game restricted to this strategy. Let L be the set of
literals visited infinitely often by p, and let i, be such that the variable x; _ has
the largest value in the permutation m among variables appearing in the literals of
L. We argue that p satisfies constructed the Rabin condition with the colour ¢; __
as a witness. This is because p visits [#; < x; ] infinitely often (and therefore in
L) for some i, and the colour ¢; € G[ri@imaxl’ but for any vertex in v € L, the
colour ¢; ¢ B, as p never visits any vertex [z; < ;] for any i (x; _ has the
largest value in the permutation).

Suppose now ¢ is not satisfiable. Then we need to show that for any po-
sitional strategy of Steven, Audrey can win with this strategy [EJ88| [EJ99]. In-
deed, consider a fixed positional strategy of Steven: for each Steven vertex [C,]
the strategy contains an edge [Cy] — [z4, < x3,] for some literal z,, < 3, ap-
pearing in Cy. Since ¢ is not satisfiable, the set {:EaZ <yl € [m]} of all se-
lected literals has a cycle. That is, there are variables Tpy,---,TB, such that
literals zp, < p,,zp, < Zpy,..., T, , < Tp,,Tp, < Tp, are among those se-
lected by Steven’s strategy. Observe now that for the fixed Steven’s positional
strategy, Audrey may play a strategy that repeatedly visits each of the vertices
[zp, < zp,],[zB, < mBg],...,[pr_l < .CCBp],[l’Bp < xp, ] in a cycle, so that these
are exactly the literal vertices visited infinitely often in the play. Then this play does
not satisfy the constructed Rabin condition, since for each colour ¢; € {cy,...,cs},

one of the following happens. For i € {By,..., By}, the colour ¢; is a bad colour for

214



[pr <xzpg,] for p=1i—1 mod k + 1. If, on the other hand, i ¢ {Bj,..., By}, then
colour ¢; ¢ G, (or B,) for any vertex in the above set of vertices is visited infinitely
often. O

We end with the following corollary that claims that these lower-bound re-

sults also hold for Muller and generalised parity games.

Corollary 11.2.1.1. Assuming the Exponential Time Hypothesis, there is no algo-

rithm that solves
o Muller games k colours and n vertices,
e k-dimensional 3-parity games with n vertices, or

e 2-dimensional k-parity games

m time ZO(Mng) . no(l).

Using known reductions from Rabin games to Muller and k-dimensional 3-
parity games, we obtain similar lower bounds as a corollary. We finally conclude by
remarking that we can also extend our result to 2-dimensional k-parity games too.
Indeed, consider the following assignment of colours to the same game graph G: for
each vertex of the form [z; < x;], we assign the two-dimensional priority (25 +1, 2i)
if 7 < j and the priorities (27,2 + 1) otherwise. The correctness of this reduction is
similar to that for Rabin games presented above, and hence we leave the verification

to the reader.
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Chapter 12

Discussions and directions

This thesis has explored the landscape of solving complex two-player games on
graphs, particularly those involving parity and Rabin objectives. Through a thor-
ough examination of the structural properties and the development of innovative
algorithms, we have made theoretical strides in solving such games.

The concept of attractor decomposition and the introduction of the Strahler
number have proven to be pivotal in this thesis for solving parity games. This
insight has laid the foundation for efficient algorithms for a range of parameters,
made possible by our construction of succinct Strahler universal trees.

Our contributions were extended further through the formulation of new
algorithms for solving parity games, which used a relaxation of attractor decom-
positions. Later, we solved Rabin games by extending the concept of attractor
decompositions to include colourful decompositions.

As we conclude, we are not only enhancing our understanding of parity and
Rabin games, but also offering valuable tools for addressing intricate challenges to
solve these games. To further propel this inquiry, we leave the reader with some
open ended discussions and questions to contemplate.

While we focus on the theoretical advancements throughout the thesis, an ob-
vious future direction is to implement these algorithms. Lehtinen and Boker [LB20]
had conjectured that parity games that arise in practice have small Strahler num-
bers. A natural question would be to verify their claim for parity games that arise
from real-life scenarios. As a first step, we remark that it can be deduced from the
work of Combes and Touati [CT20] that a randomly generated parity game (see
their paper for an exact definition of what randomly generated means) has Strahler

number 1.

Question I. Do parity games that arise from practical applications or those avail-
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able in standard benchmarks have a low Strahler number?

We have constructed several algorithms that exploit the structure of attractor
decompositions. Consequently, we believe that we should investigate the structure
of ordered trees that arise from the attractor decompositions of hard examples and
how they impact the intricate behaviour of our algorithms. With deeper insights, we
foresee the potential to fine-tune these algorithms to create exceptionally efficient

parity game solvers.

Question II. What do the trees of attractor decompositions of these games look
like? Are trees of attractor decompositions significantly smaller than the trees of

progress measure algorithms for games that arise in practice?

We also acknowledge that our symmetric algorithm can be less intuitive.
When the input trees are smaller than the trees of attractor decomposition in the
games, the sets returned may not provide complete information about the win-
ning players within those sets. This limitation extends to other symmetric quasi-
polynomial algorithms as well. Furthermore, in the context of synthesis, we ideally
would like strategies to be produced alongside a solution. Understanding the sets
returned by our algorithms better might lead to insights into how this algorithm

can be simplified or made efficient.

Question II1. Can symmetric attractor-based algorithms, especially the quasi-poly-
nomial ones (including ours) be modified to produce strategies for one or both play-

ers?

Our algorithms for parity games are all parameterized by trees. It would be
productive to understand the performance of these algorithms better on different
families of parity games and for different universal trees. We do not have examples
of families of games on which our symmetric algorithm takes more than polynomial
time, even for our exponential version, which uses complete n-ary trees. A possi-
ble direction of research would be to show that our algorithm on complete trees
takes quasi-polynomial, or some sub-exponential time. Conversely, if we can in-
stead construct families of games for which this algorithm takes exponential time,
we could shed new light on the central question of overcoming the quasi-polynomial
barrier [CDF19)].

Question IV. Are there families of games for which our symmetric attractor-based
algorithm (Algorithm @ or Algorithm @) requires more than polynomial amount of

time?
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We developed the first polynomial space algorithm to solve Rabin games
that is also fixed-parameter tractable with respect to the number of colours. More-
over, for LTL synthesis, existing tools, such as Rabinizer 4 [KMSZ18|, convert LTL
specifications to Rabin automata or parity automata. Analysing whether our algo-
rithms for solving the obtained Rabin games outperform the approach of converting
them to parity games and utilising our parity game algorithms or other parity game

algorithms would be a fruitful pursuit.

Question V. In practice, does our algorithm to solve Rabin games outperform the
approach of converting them to parity games and using our algorithms to solve parity

games?

Our algorithm for both Rabin and fair Rabin games, like other progress mea-
sure algorithms, can display worst-case behaviour in certain asymmetric examples.
To show that a vertex is losing for Steven, the measure needs to increase until it
reaches T. This lack of symmetry might lead to worst-case behaviour. But circum-
venting this problem by constructing similar measures for Audrey in the hopes of
finding a symmetric algorithm is not as straightforward, as Audrey does not have a

positional strategy in this game.

Question VI. Are there algorithms that can solve Streett games and produce a
strategy for Steven in time and space requirements similar to our algorithm based

on colourful universal trees?

On another tangent, symbolic algorithms for parity games are implicitly or
explicitly guided by universal trees [Zie98|, [CDHSIS8| [JMT22] constructed for both
players. We believe that with some effort, our small colourful universal trees can be
exploited to build symbolic algorithms that solve Rabin games or fair-Rabin games.
For instance, one could draw inspiration from the Jurdziriksi-Morvan algorithm for
parity games, combined with our construction of colourful universal trees. Indeed,
we already have a definition of colourful decompositions, which one might hope to

obtain as an end-result of such a recursive symbolic algorithm.

Question VII. Can we construct a symbolic algorithm that solves Rabin games

proportional to the size of our colourful universal trees?

One can also analyse parameters with respect to which Rabin games are
FPT. However, certain parameters have already been excluded—subject to condi-
tions like P # NP or ETH—due to established lower bound results [EJ99, IGLM™ 15|,
including our own result in Chapter These include tree-width (of the under-
lying undirected graph), entanglement, DAG-width and any other directed width
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measure, as the graph we produced has a constant value of all the above measures.
Some work has already been done towards this direction for parity games [Obd03],
Obd07, BDHKO6, [Gan15), [Sta23], where such lower bound results do not hold. For
the most significant parameter—the number of colours in a Rabin game—we ask
if algorithms can potentially benefit (both theoretically and practically) with some
clever pre-processing. Modifying the input game graph or the acceptance condition
to significantly reduce a suitable parameter or even finding a restriction of the trees
necessary for lifting could lead to an improved performance of the algorithm. Re-
ducing the size of such trees from more than k! to a value closer to (k/2)! in such
cases is significant for practical algorithms. Indeed, 8! is comparable to the number
of words in this thesis, while 4! is closer to the number of words in the following

question.

Question VIII. Can we solve Rabin games with k colours and n vertices in time

that is polynomial in n and linear in (k/c)! for some constant ¢ > 17

Finally, we ask if we can extend our algorithms to solve games with a wider
range of objectives. Toward this step, we considered fair Rabin games in Chapter
However, we can also ask the more general question of solving Muller games. It is
already known that algorithms that solve Muller games by converting them to parity
games that are fixed parameter tractable with respect to the number of colours. But,
as with Rabin games, we face an exponential blow-up in space required to solve these
games. Muller games are known to be PSPACE-complete [HD05|] and algorithms that

run in polynomial space are known [McN93].

Question IX. Can we construct a polynomial-space algorithm that solves Muller
games or Emerson-Lei games [ELS6|] in time that is FPT with respect to the number

of colours?

With these open avenues of thought, we hope to spur future investigations
that will shape the trajectory of algorithms that solve parity and Rabin games faster

in theory and practice.
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