
PARITY GAMES AND REGISTER INDEX

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

OF CHENNAI MATHEMATICAL INSTITUTE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

Thejaswini Raghavan

Supervised by:

Dr. Marcin Jurdzinski

University of Warwick June 2019

Acknowledgments

First of all, I would like to thank my advisor Dr. Marcin Jurdzinski for his support, the wonderful

ideas and motivation continue to keep me enthusiastic about work. He also went to a lot of trouble

securing funding and making my work at Warwick possible. I am very glad that he agreed to be my

PhD advisor as well.

I would also like to thank Laure Daviaud without whom this thesis would not be possible. I

particularly appreciate the long discussions both in person and on Skype that we had, that helped me

in writing this work. I am very grateful for all the feedback and the long hours that she put in to help

me with writing and editing.

I would be remiss in my duties if I did not thank Prof. B. Srivathsan for introducing me to games,

which got me excited about this line of work.

Finally, I would like to express my gratitude to my friends, family and the dogs of CMI who

provided all the love, care, and distraction that I needed outside work.

ii

Contents

Acknowledgments ii

1 Introduction 1

2 Preliminaries 3

2.1 Equivalence between priorities on edges and vertices . 4

2.2 Finite version of Parity games . 5

3 Progress Measure and Universal Trees 6

4 Introduction to Register Index 9

5 Lower Bound of Register Index 13

5.0.1 Register index of Hk. 15

5.0.2 Register index and embedding. 16

6 Upper bound of register Index 18

6.0.1 Structural forest and structural index . 18

6.0.2 Embedding of Hk and structural index . 20

6.0.3 The register index is bounded by the structural index 20

6.1 Existence of a structural forest . 21

6.1.1 Strategy decomposition . 22

6.1.2 Construction of a structural forest . 22

6.1.3 An example . 24

7 Conclusion 26

Bibliography 27

iii

A Proof of Upper bound of register index 29

iv

Chapter 1

Introduction

Parity games are two-player games on graphs and have been studied since early 1990’s [9, 10] with

applications in automata theory on infinite trees, fixpoint logics, verification and synthesis.

Two players Even and Odd move indefinitely a pebble on vertices of a game-graph. Each vertex

carries an integer called its priority, and the aim of Even is to ensure that the highest priority seen

infinitely often is even. Odd has the opposite goal and it is well-known that given a starting vertex,

either of the two players has a (positional) winning strategy to win the game.

Early and influential works by McNaughton [17] and by Zielonka [20] developed recursive algorithms

to solve those games with a running time O(nd+O(1)), where n is the number of vertices in the game

and d the number of priorities. Recently, the breakthrough result of Calude et al. [4] gave the first algo-

rithm that achieved a quasi-polynomial running time of no(d), followed by two other quasi-polynomial

algorithms by Jurdziński and Lazić [12] and Lehtinen [15]. Existence of a polynomial-time algorithm

for solving parity games is a fundamental long-standing open problem [10]. However, many classes of

games had been proved to be solvable in polynomial time, in particular when bounding some graph-

theoretic parameters such as the tree-width [18], DAG-width [1], clique-width [19], Kelly-width [11]

and entanglement [2].

In [15], Lehtinen introduces yet another parameter: the register index and uses it to provide a quasi-

polynomial algorithm to solve parity games. It is also highlighted that games with bounded register

index can be solved in polynomial time. This class of games is orthogonal to the ones mentioned above

that are known to be in P. However, the register index is defined in quite an abstract manner and our

aim is to provide a more intrinsic graph-theoretic characterization of the games with bounded register

index, pinpointing exactly which games are and are not solvable in polynomial time with the algorithm

1

CHAPTER 1. INTRODUCTION 2

of Lehtinen. Our characterization is in terms of forbidden patterns: a game has at least register index

k if and only if a specific graph Hk is embedded in it (for a notion of embedding defined in the core of

the paper).

Organization of the thesis We introduce the basic definitions in Chapter 2. Chapter 3 and

Chapter 4 introduce previous works in parity games that are relevant to the topic at hand. In Chapter 5,

we give the definition and graph-theoretic characterization of the class Ck of games with bounded

register index and solvable in polynomial time. The rest of the thesis is devoted to proving this

characterization. In the same Section 5, we prove the lower bound, namely that a game in Ck has

register index at least k and in Sections 6 and 6.1 we prove the upper bound, namely that a game in

Ck has register index at most k.

Chapter 2

Preliminaries

A parity game is a two player game played between two player Even and Odd. The arena is a game

graph G, where the vertices V = Vo] Ve of the graph are partitioned into two among player Odd and

player Even. Each vertex, is in addition given a priority, from the set of natural numbers, {1, 2, . . . , d}.

There is a token, which can be placed on a vertex, and is moved along the edge, depending on the

whom the vertex belongs to. A play of the parity game is the sequence of vertices visited by the token

in the infinite duration. It is an element in the free monoid generated by V, V ∗.

A play of the game is said to be winning for the Even player if the maximum among the set of

priorities visited infinitely in the play often is even and it is winning for Odd otherwise.

In Figure 2.1, we have an example game where we have player Odd’s vertices denoted by triangular

nodes and player Even’s vertices denoted by square nodes. The numbers in the vertices denote the

prority of the vertex. In this example, it so happens that the priorities are distinct, but that need not

be the case.

Suppose a token is placed in player Even’s vertex with priority 5, and she moves it from there to

the vertex with priority 2 from which she makes a move from there to the next vertex, belonging to

the Odd player with priority 1, and then the token is moved to another of Odd player’s vertex which

has priority 4, and odd chooses to move it back to to 1 again, and this cycle is repeated infinitely

often. So, the run here is 25(14)ω. So, inf(25(14)ω) = {1, 4}, and the maximum is 4, which is even and

player Even would win. However, if at vertex with priority 4, Odd chose to always move the token to

the left, to the even player, then we they play would look like (2145)ω. For this play, we know that

max{inf((2145)ω)} = 5. And this play is winning for Odd.

A winning strategy for player Even is, informally, an instruction for player Even to make its move,

3

CHAPTER 2. PRELIMINARIES 4

2 1 3

5 4 6

Figure 2.1: Example of Parity Game

so as to win the game irrespective of the decision of the other player. In the game in Figure 2.1, if

Even follows the strategy at the vertex 3 and 6, to send the game to each other, we know that the

game would be winning at these two states for Even. Such strategies are called memoryless strategies,

where the players do not decide the move on the history of the play, rather, just the current position.

Formally, it a strategy is partial function from the sequence of plays to a vertex such that this

vertex extends the play for Even. and a memoryless strategy is one such that this function is the same

if the last vertex in the domain is the same.

It is known that parity games are determined. Further, they are known to be positionally determined

for both the player. i.e, both Even and Odd have memory less strategies[9].

This immediately shows that checking if a game is winning for player Even from a vertex is in

NP . This is done by guessing a positional strategy for player Even and verifying if this strategy

is winning. Since the game is symmetric with respect to both the players, we can conclude that,

Parity ∈ NP ∩ co−NP .

2.1 Equivalence between priorities on edges and vertices

A variation of parity games considered in literature is that the priorities are assigned to edges instead

of vertices and the winning condition is similar. It is not hard to see the equivalence between these

two versions as one can be constructed from the other with only a polynomial difference in the size of

a graph. An example of the modification is illustrated in the figure below.

3

3
3

3

Figure 2.2: Transferring priority from Vertices to Edges

0 3 0
3

Figure 2.3: Transferring priority from Edges to Vertices

For instance, given a a parity game with priorities on vertices, one just transfers the same priorities

to the edges that are outgoing from the said vertex. And for the conversion the other way, for each

edge e = (u, v), we introduce a new vertex we that has the same priority as the edge and assign the

CHAPTER 2. PRELIMINARIES 5

priority 0 to the existing vertices and add edges (u,we) and (we, v) instead.

2.2 Finite version of Parity games

Also known as the first cycle game, it was introduced in [3]. The first cycle game, is also played on a

similar game graph, where the two players are moved along the players’ vertices. However the game

comes to an end when some vertex is repeated in the duration of the play. The winner of the play is

declared as Odd if the highest priority occurring infinitely often in the loop is Odd and Even is winning

otherwise. [3] also shows that this game is equivalent to the Parity game defined above. Furthermore,

parity games have a positional strategy.

Chapter 3

Progress Measure and Universal

Trees

Since parity games are positionally determined, we have a witness of polynomial size for parity games,

which just produces the strategy for any given player. However, progress measures, which we will

re-introduce in this chapter, provides yet another certificate that can be verified locally. To completely

understand the definition of progress measure [13], we first need to understand the definition of an

ordered tree.

Suppose we have a rooted tree where the root of the tree is associated the empty sequence. Each

edge is labelled from a linearly ordered set, such that for every node, all its children are labelled

distinctly. For every vertex in the tree, there is a unique labelling corresponding to the edges on

unique path from the root to the node. Such a tree with this labelling is an ordered tree. More

formally,

Definition 1. An ordered tree is a prefix closed set of tuples whose elements are from a linearly ordered

set.

With the usual< order on natural numbers, the following prefix closed set {(), (1), (1, 1), (1, 2), (2), (2, 1)}

can be realised as the tree in Figure 3.1, where the leaves from left to right, are labelled by (1, 1), (2, 1), (2, 2)

and all left branches are labelled with 1, and the right branches with 2.

This order on the roots induces a total order on all the tuples if we impose the rule that an ancestor

is strictly smaller than a child.

A truncation of a leaf in the tree by p 6 r, where r 6 h, is the height of the tree is the ancestor of

6

CHAPTER 3. PROGRESS MEASURE AND UNIVERSAL TREES 7

0, 1

2, 3

4, 5
()

(2) (1)

(2, 1) (1, 1) (1, 2)

Figure 3.1: Example of an ordered tree

p at level h. So, we say the truncation of a tuple (td1 , td−3, . . . , t1)|p, if p is odd, is (td1 , td−3, . . . , tp)

and td1 , td−3, . . . , tp+1 otherwise. For example, consider the node (2, 1) on the Figure 3.1, (2, 1) |2=

(2, 1) |3= (2) and for any node v, v |4= ().

Definition 2. Progress measure for a parity game G is a mapping µ from the vertices of the game

graph winning for player Even, to an ordered tree such that

• If u belongs to Odd, then for every outgoing edge (u, v) from u, µ(u) |π(u)> µ(v) |π(v)

• If u is Even’s vertex, then there exists an edge (u, v) such that µ(u) |π(u)> µ(v) |π(v)

The inequality is strict when π(u) is odd. And

For a game graph which is Even-winning, there exists therefore a tree with at most n vertices

associated to it, called the progress measure tree. The main result of Jurdzinski and Lazic in [14],

which gave a quasi-polynomial time algorithm to solve parity games was to provide an encoding of

the progress measure tree so that one could search through the space of all possible progress measures

faster.

It has been shown that if a parity game is winning from all vertices of the game graph for Even,

then there exists a progress measure proved in [13] and later shown in [14] where the mapping to trees

is made explicit along with the proof that it is necessary and sufficient to consider ordered trees of n

leaves for the mapping.

Theorem 1 (Existence of Progress Measure[13],[14]). Given a parity games on the vertex set V , such

that the games is winning for Even from all vertices, there is a progress measure where the range is an

ordered tree of at most n leaves.

Lemma 1 (Succinct Encoding of Progress Measure Tree, [14]). Any ordered tree having n leaves with

depth 2.d can be encoded using at most O(log(n). log(d)) many bits.

With Theorem 1 and Lemma 1, one can conclude that we can exhaustively search through all the

ordered trees in O(nlogd) time, and therefore have a Quasi polynomial algorithm for Parity games.

CHAPTER 3. PROGRESS MEASURE AND UNIVERSAL TREES 8

Definition 3. An (l, h) Universal tree is an ordered tree of height h, such that, given any ordered tree

with n leaves and height l there is an injective map to this tree that preserves the order and maps the

root of this ordered tree to the root of the universal tree.

An alternative way to view the Lemma 1 is to view this as a succinct encoding of an universal tree.

We know from [6] that the lower bound of the size of a universal tree is, upto a constant factor, the

same of the upper bound provided in [14], in the encoding of ordered trees.

Chapter 4

Introduction to Register Index

We define here register games as introduced in [15]. Our definition slightly differs but retains all the

properties proved in [15].

Given a parity game G and a positive integer k, the k-register game associated with G, denoted by

RkG, is a parity game constructed from G and a set of k registers aimed at storing priorities of G.

The number of a register is called its rank. A valuation of the registers is a tuple of k integers

between 0 and the highest priority of G. Given a rank i, a valuation [xk, xk−1, . . . , x1] of the registers is

said to be i-reset if it is changed into the valuation [xk, xk−1, . . . , xi+1, xi−1, . . . , x1, 0]. Finally, given a

priority j in G, a valuation [xk, xk−1, . . . , x1] of the registers is said to be j-updated if every xi smaller

than j is changed into j.

For example, {3}-resetting the valuation of four registers [6, 5, 3, 2] gives [6, 3, 2, 0] and 4-updating

[6, 5, 3, 2] gives [6, 5, 4, 4].

The parity game RkG works as follows: the registers all initially have value 0 and RkG follows a

play in G (but without outputting priorities from G). After any move in G by any of the two players

reaching some state of priority j, the following actions are performed:

• Player Even chooses a rank or 0.

• If Even has chosen 0, priority 1 is output. Otherwise, let t be the chosen rank. Priority 2t is

output if the valuation of the register of rank t is even and 2t+ 1 if it is odd.

• The registers are t-reset.

• The registers are j-updated.

9

CHAPTER 4. INTRODUCTION TO REGISTER INDEX 10

Since register valuations can be encoded in states, RkG defines a parity game. More formally, every

vertex u in RkG can be defined as a 4-tuple: the vertex in G we are currently in, denoted by νu, the

current valuation of the registers ηu, an integer in {0, . . . , k}, denoted tu representing a possibly chosen

rank and an integer ιu in {1, 2, 3}, representing which stage we are in. For vertices with ιu 6= 3, we

restrict tu to be 0. Vertices with ιu = 1 are owned by who owns νu in G, all the other vertices are

owned by Even. Vertices with ιu = 3 have priority 2t (resp. 2t+ 1) if tu 6= 0 and the valuation of the

register of rank tu in ηu is even (resp. odd). All the other vertices have priority 1.

The edges are as follows:

• for vertices u = (νu, η, 0, 1), there is an edge (u, v) if v = (νv, η, 0, 2) and there is an edge in G

from νu to νv.

• for vertices u = (ν, η, 0, 2), there is an edge (u, v) if v = (ν, η, tv, 3) for any integers in {0, . . . , k}.

• for vertices u = (ν, ηu, t, 3), there is an edge (u, v) if v = (ν, ηv, 0, 1) and ηv is the valuation of

the registers obtained from first t-resetting and then b-updating η(u) where b is the priority of ν.

Register index. It is shown in [16] that G is winning for Even from a vertex u if and only if there is

k such that RkG is winning for Even from u and register valuation [0, . . . , 0]. In that case, equivalently

RkG is winning for Even from u and any register valuation. The register index of a parity game G

winning for Even from every vertex is the minimum k such that RkG is winning for Even from all the

vertices (with any register valuation). The parity game RkG consists of at most 2k+1 priorities and the

number of vertices is also bounded O(n.k.dk). The main result of [16] was to show that the register

index of a game with n vertices is at most log n if the vertices are winning for Even. This gives a

bound on k by log n, thereby reducing the game to a parity game on O(n. log n.dlogn). with at most

2 log n+ 1 vertices.

We will attempt to show the above using an alternate method, in relation to progress measures.

In the previous section, we saw that all the vertices in a game are winning if and only if there exists

a progress measure tree with at most n vertices such that there is a mapping from the vertices to the

tree satisfying the progress conditions.

Definition 4. The Strahler number of a tree T , denoted also by str(T) is 1 plus the maximum height

of a complete binary tree that is minor of T.

Equivalently, it can be defined by induction: the Strahler number of a single node is 1 and the

Strahler number of a tree with a root having subtrees of Strahler numbers k1, ..., k` is the maximum

of the ki if exactly one of them is maximal and is 1 plus this maximum otherwise.

CHAPTER 4. INTRODUCTION TO REGISTER INDEX 11

1 3 1 1

5 3 1 1

311

2i − 1 Ki Ki

Figure 4.1: Pictures of K1, K2, K3 and Ki+1

Theorem 2. Given a parity game on G on vertices, where Even wins from all the vertices and k is

the Strahler number of the progress measure tree of G, then the register game RlG is winning for all

l > k.

Proof. We describe the strategy for the register game RkG, where k > Str(T) and argue rigorously in

the appendix on why that this strategy is winning for player Even.

Description of the strategy Given that we already know that the parity game G has a progress

measure associated with it and that progress measure in turn guarantees a positional strategy for the

underlying parity game, we will fix such a positional strategy and call it σ. We know that any play

which obeys σ will only involve progressive edges. i.e, while moving the token along the vertices,

Even follows the positional strategy σ, such that on moving from a vertex u to v, the edge (u, v) is

progressive.

Now to define a strategy σ′ for the register game RkG. Notice that a strategy for Even can be

thought of as having two parts. One which tells the player which edge to take to given the current

register values. The other component tells if a register must be reset, and if so which one. The strategy

σ′ that we define here, does not take into account the value of the register at all. We say that Even

plays the game such that Even has to move to another vertex, she follows σ. For resetting the register,

Even does the following: If during the play an edge u→ v is taken such that µ(u) 6 µ(v), then in the

turn to reset right after taking this edge, irrespective of the contents of the register, Even resets the

kth register where k is one more than the Strahler number of the least common ancestor in T , of the

nodes µ(u) and µ(v).

An initial conjecture, one might be tempted to say that the Strahler number of the progress measure

tree is equal to the register index. However, the following example shows that the Strahler number of

the progress measure tree over-estimates the register index by an arbitrary amount.

Consider the pattern K1 which just consists of the vertices 1 with and Ki which is the path which

consists of the vertex 2i − 1 followed by two copies of Ki−1 in succession. As an example, we will

construct K1,K2,K3 and Ki+1 as in Figure 4.1

CHAPTER 4. INTRODUCTION TO REGISTER INDEX 12

Now, for each of the graph Ki, add another vertex of priority 2i and complete the cycle of Ki by

adding edges from this new vertex to the first vertex (vertex with in-degree 0) and from the last vertex

(vertex with out-degree 0). We will call these modified graphs K ′i for each i. It is easy to verify that

the associated progress measure tree for each of the structures K ′i is the complete binary tree of height

i− 1, thereby making the Strahler index of these graphs at least i for each K ′i. But since each of these

graphs is a cycle, they have a register index 1. A simple description for a strategy is for Even to reset

the vertex every time right after she sees the highest even priority vertex in this cycle, i.e, the vertex

of priority 2i. In the next section, we will give a tight characterisation of register index.

Chapter 5

Lower Bound of Register Index

Embedding of a game. A game G′ is said to be embedded in a game G if there is a map ζ from

the vertices of G′ into the vertices of G such that:

1. ζ is order-preserving on the priorities of the vertices, i.e. if the priority of u is smaller than the

priority of v then the priority of ζ(u) is smaller than the priority of ζ(v). (Note that different

vertices which have the same priority can be sent to vertices having different priorities)

2. ζ is parity-preserving on the priorities of the vertices, i.e. the parities of the priorities of u and

ζ(u) are the same.

3. For all edges from u to v in G′, there is a path in G from ζ(u) to ζ(v) visiting only vertices of

priorities no greater than the maximum of the priorities of ζ(u) and ζ(v).

A particular family of parity games. We use here a class of games given in [15] (and proved to

have high register index). They are picture in Figure 5.1. The game Hk is defined by induction on k.

All the vertices of Hk belong to Odd. The game H1 contains one vertex of priority 0 and one self-loop.

0 0 0

2

1

0 0

2

1

0 0

2

1

4

3

Hk Hk

2k

2k − 1

Figure 5.1: Pictures of H1, H2, H3 and Hk+1

13

CHAPTER 5. LOWER BOUND OF REGISTER INDEX 14

The game Hk+1 is made from two copies H0
k and H1

k of Hk and two new states of priorities 2k− 1 and

2k, and edges from the vertex of priority 2k−2 of H0
k (resp. H1

k) to the vertex of priority 2k−1 (resp.

2k) and from the vertex of priority 2k− 1 (resp. 2k) to the vertex of priority 2k− 2 of H1
k (resp. H0

k).

Given a parity game G and a positional strategy σ of Even, Gσ denotes the game G where the

moves of Even are restricted to σ.

Theorem 3. For all non negative integers k, one can decide in polynomial time the winner of a parity

game in the following class Ck: the class of parity games G such that Hk+1 is not embedded in Gσ for

some positional strategy σ of Even.

The proof of Theorem 3 is a consequence of Theorem 4, following ideas from [15] and requires the

notion of register games that we introduce now.

Theorem 4. A parity game G, in which Even wins from all the vertices and Odd owns all the vertices,

has register index k if and only if Hk is embedded in G but not Hk+1.

Proof of Theorem 3 assuming Theorem 4. From Theorem 4, we know that Ck consists of exactly the

games which have register index at most k.

So, deciding the winner in a game G of Ck is equivalent to deciding the winner in the game RkG,

which has O(nk(d+ 1)k) vertices and highest priority 2k+ 1, where d denotes the highest priority and

n the number of vertices in G. This can be done in time O
(
nk(d+ 1)k

)2k+1
, which is polynomial in

the size of G provided k is fixed.

In this section, we prove the lower bound of Theorem 4, given in Lemma 2. The upper bound given

in Lemma 3 will be proved in Sections 6.

Lemma 2. Let k be a positive integer. If Hk is embedded in G then the register index of G is at least

k.

Lemma 3. Let k be a positive integer. If Hk+1 is not embedded in G then the register index of G is

at most k.

Proof of Theorem 4 assuming Lemmas 2 and 3. If Hk is embedded in G but not Hk+1 then directly

by Lemma 2 and 3, G has register index k. Conversely, if G has register index k, by using the

contrapositives of the two lemmas, we obtain that Hk is embedded in G but not Hk+1.

Lemma 2 is a direct consequence of Propositions 1 and 2 below.

CHAPTER 5. LOWER BOUND OF REGISTER INDEX 15

5.0.1 Register index of Hk.

The following proposition is proved in [15]. We give the proof for the sake of completeness.

Proposition 1 ([15]). For all positive integers k, Hk has register index k.

Proof. Let us first prove that the register index of Hk is at most k. We show by induction that Even

has a winning strategy in RkHk
. For k = 1, since H1 consists of one vertex with priority 0 and one

self-loop, the only register contains value 0 at all time and if Even resets this register after every move,

the highest priority output infinitely often on every infinite play is 2, so Even wins. Now, let k > 1.

Let us define a winning strategy for Even in Rk+1
Hk+1

. The game Hk+1 consists of two copies of Hk and

two vertices of priority 2k and 2k − 1. As long as Odd remains in vertices belonging to either of the

two copies in Hk+1, Even follows the winning strategy given by induction, using only the k registers of

lowest rank. After visiting the vertex of priority 2k in Hk+1, Even resets the register of rank k + 1 as

soon as its value is 2k. Consider an infinite play in Rk+1
Hk+1

: if it remains eventually in either of the two

copies of Hk, by induction hypothesis, Even wins using only k registers. Otherwise, the play alternates

infinitely often between the two copies and thus visits infinitely many times the vertex of priority 2k

of G. Resetting the register of rank k + 1 outputs then priority 2k + 2 in Rk+1
Hk+1

. Moreover, since the

register of rank k + 1 is only reset in this condition, no higher priority is ever output and Even wins

Rk+1
Hk+1

.

Let us now prove that the register index of Hk is at least k. We proceed again by induction on k.

We want to prove that Hk+1 has register index at least k + 1, that is to say that Odd has a winning

strategy in RkHk+1
from at least one vertex with register valuation [0, . . . , 0]. For this, we strengthen

slightly the induction hypothesis and we are going to prove that Odd has a winning strategy in RkHk+1

from any vertex with any register valuation. By definition H1 is of register index 1. Consider now

k > 1 and assume that Hk has register index k. The game Hk+1 is constructed from two copies H0
k

and H1
k of Hk. Let us define the strategy for Odd in RkHk+1

.

(i) Odd follows the strategy given by induction and remains in H0
k until the register of rank k is

reset at least k times.

(ii) Odd then proceeds to the vertex of priority 2k − 1 in G and then to H1
k .

(iii) Odd follows the strategy given by induction and remains in H1
k until the register of rank k is

reset once.

(iv) Odd then proceeds to the vertex of priority 2k in G and then to H0
k .

CHAPTER 5. LOWER BOUND OF REGISTER INDEX 16

If a play eventually remains in one of the two copies of Hk in G, this means that the register of

rank k is eventually never reset, so only k−1 registers are used and by induction hypothesis Odd wins

the game. Otherwise, the play visits infinitely often the vertices of priority 2k − 1 and 2k of G. After

visiting the vertex of priority 2k, which is the highest priority, all the registers have value 2k. Then, in

H0
k , the register of rank k is reset k times, which makes the values of all the registers smaller than 2k.

Then the vertex of priority 2k − 1 is visited and the values of all the registers are updated to 2k − 1.

Finally in H1
k , the register of rank k is reset at least once, which outputs priority 2k+ 1, which is odd

and the highest priority in the game. By repeating this argument, priority 2k + 1 is output infinitely

often and Odd wins the play.

5.0.2 Register index and embedding.

Proposition 2. If a game G′, for which all the vertices are owned by Odd and winning by Even, has

register index k and is embedded in a game G, for which all the vertices are owned by Odd and winning

by Even, then G has register index at least k.

Proof. If k = 1 the property is trivially satisfied. Let k > 2. Given a winning strategy for Odd in

Rk−1G′ , we define a strategy for Odd in Rk−1G , and prove that it is winning. Let ζ be the embedding

from G′ to G. We say that a vertex in G is a cornerstone if it is the image of some vertex in G′ via the

embedding. To avoid confusion, we also denote by (ν, η, t, ι)G (resp. (ν, η, t, ι)G
′
) for a vertex in Rk−1G

(resp. Rk−1G′). We define the strategy inductively on the length of a finite play in Rk−1G . Without loss of

generality we can assume that the play starts in a vertex (ν, [0, . . . , 0],0, 1)G where ν is a cornerstone.

Let the vertex ν′ of G′ be such that ζ(ν′) = ν. From the vertex (ν′, [0, . . . , 0],0, 1)G
′

of Rk−1G′ , the

winning strategy gives a vertex (µ′, [0, . . . , 0],0, 2)G
′

reached by Odd. By definition of the embedding,

there is then a path in G from ν to ζ(µ′) = µ visiting only priorities no greater than the maximum

of the priorities of ν and µ. This means that Odd has a way to reach a vertex (µ, η, 0, 1)G in Rk−1G

following this path, for some valuation η, independently of which registers are reset by Even on the

way. Note that µ is also a corner stone. This defines the strategy for Odd from the first vertex.

Consider now a finite play ρ1(ν, η, 0, 1)Gρ2(µ, γ, 0, 1)G in Rk−1G where ν and µ are cornerstones and

ρ2 is a play only visiting vertices in G which are not cornerstones. Consider t to be the highest rank of

a register reset by Even along ρ2 having the following property: the valuation of the register of rank t

was odd (when reset), or was even and was coming from the priority of a cornerstone vertex. We set

t = 0 if such a rank does not exist.

By induction, there is a corresponding play in Rk−1G′ compatible with the winning strategy of the

CHAPTER 5. LOWER BOUND OF REGISTER INDEX 17

form ρ′1(ν′, η′, 0, 1)G
′
(µ′, γ′, 0, 1)G

′
with ζ(ν′) = ν, ζ(µ′) = µ and γ′ obtained from η′ where Even has

reset the register of rank t (or none if t = 0). The winning strategy of Odd in Rk−1G′ gives a vertex

(ω′, γ′, 0, 2)G
′

to reach. As before, by the embedding there is a path from µ to ζ(ω′) = ω in G visiting

only priorities no greater than the maximum of the priorities of µ and ω. This means that Odd has a

way to reach a vertex (ω, ξ, 0, 1)G in Rk−1G following this path, for some valuation ξ, independently of

which registers are reset by Even on the way. This defines the strategy for Odd in Rk−1G .

We prove that this strategy is winning for Odd in Rk−1G . Given an infinite play in Rk−1G following

this strategy, there is a corresponding play in Rk−1G′ compatible with the winning strategy of Odd,

and visiting the preimage of the cornerstones visited by the play in Rk−1G . First of all, if Even resets

infinitely often in the play in Rk−1G , she must reset infinitely often a register with a valuation coming

from the priority of a cornerstone vertex, by property 3. of the embedding. So, in the corresponding

run in Rk−1G′ Even resets infinitely often. Let t be the highest rank of a register reset infinitely often.

It has to be on an odd valuation, since the play is compatible with the winning strategy of Odd. By

construction, the highest rank of a register reset infinitely often in the play in Rk−1G is then also t and

it is reset infinitely often on an odd valuation by properties 1. and 2. of the embedding.

Chapter 6

Upper bound of register Index

In this chapter, we prove Lemma 3 which would establish an upper bound on the register index.

From now on, we fix a game G, in which Even wins from all the vertices and Odd owns all the

vertices.

We first define a notion of structural forest, which consists of a forests of ordered trees associated

with G and satisfying some specific properties. Each forest comes with a parameter called the structural

number of the forest. We define then the structural index of G as the smallest structural number of a

structural forest associated with G. We prove the three following properties, which finishes the proof

of Lemma 3:

1. There exists a structural forest associated with G.

2. If Hk+1 is not embedded in G then all structural forests associated with G has structural number

at most k.

3. The register index of G is bounded by its structural index.

In the rest of this section, we give the definition of structural forest and structural index and prove

the second and third properties given above. The first property is proved in Section 6.0.1.

6.0.1 Structural forest and structural index

We denote by π(u) the priority of a vertex u in G. A vertex u in G is called play-winning if there is a

play ρ such that u is visited infinitely often and of highest (necessarily even) priority in ρ.

Definition 5. An ordered finite tree T is called a structural tree of G if there is a function α mapping

each node of T to a non-empty subset of play-winning vertices of G such that:

18

CHAPTER 6. UPPER BOUND OF REGISTER INDEX 19

• for every node s, the vertices in α(s) have all the same priority, denoted by π(s), and if t is a

child of s then π(s) > π(t),

• for two distinct nodes s and t, α(s) ∩ α(t) = ∅,

• for every node s and t, and every vertex u ∈ α(s) and v ∈ α(t), the following condition is

satisfied:

– If s is an ancestor of t, then there are paths from u to v and from v to u visiting only

vertices of priority at most π(u).

– If s and t are siblings with s < t and z denotes their parent, then there is:

1. at least one path in G from u to v in which the highest priority is odd and between

max(π(s), π(t)) and π(z),

2. no path from v to u visiting only vertices of priority strictly less than π(z),

Given a finite set F of structural trees T and their associated mappings αT , we denote by αF the

mapping from the nodes in F to subsets of vertices extending the αT .

The Strahler number of a tree T is 1 plus the maximum height of a complete binary tree that

is minor of T. Equivalently, it can be defined by induction: the Strahler number of a single node is

1 and the Strahler number of a tree with a root having ` subtrees of Strahler numbers k1, . . . , k` is

the maximum of the ki if exactly one of them is maximal and 1 plus this maximum otherwise. The

Strahler number of a node in a tree is defined as the Strahler number of the subtree rooted in this

node.

Definition 6. A structural forest of G is a finite set F of structural trees T1, . . . Ti such that:

• for all vertices u in G, u is a play-winning vertex if and only if u ∈ α(s) for some node s,

• for two nodes s and t, α(s) and α(t) are disjoint or equal,

• for two play-winning vertices u and v in G, if there is a path from u to v with highest priority

which is odd and a path from v to u, then all paths from v to u visits a vertex x such that there

is a tree T in F , with nodes s, t, z in T such that u ∈ α(s), v ∈ α(t) and x ∈ α(z); z is an

ancestor of s and t; s and t are in distinct subtrees rooted in z; and the Strahler number of s

(resp. t) is the maximum of the Strahler numbers of s′ such that α(s) = α(s′) (resp. t′ such that

α(t) = α(t′)).

CHAPTER 6. UPPER BOUND OF REGISTER INDEX 20

Structural index of G. We define the structural number of a structural forest as the maximum of

the Strahler number of a tree belonging to the forest, and the structural index of G as the minimum

of the structural numbers of structural forests associated with G.

6.0.2 Embedding of Hk and structural index

We prove here the second property.

Lemma 4. If Hk+1 is not embedded in G, then every structural forest of G has structural number at

most k.

Proof. We prove by induction on k that if there is a structural tree T associated with G of Strahler

index k + 1 then Hk+1 is necessarily embedded in G, and more precisely, in vertices in the image of

the nodes of T .

The case k = 0 is immediate.

Consider now k > 0 and a structural tree associated with G of Strahler number k+1. By definition

of the Strahler number, there must be a node s with at least two children t1 < t2 such that the Strahler

number of the subtree rooted in s is k + 1 and the Strahler number of the subtrees T1 and T2 rooted

in t1 and t2 respectively is k. Let v1 ∈ α(t1), v2 ∈ α(t2) and v ∈ α(s). Since t1 < t2, by definition

of structural tree, there is a path from v1 to v2 for which the highest priority is odd and between

max{π(t1), π(t2)} and π(s). Let u denote a vertex on this path with such odd priority.

By induction hypothesis, Hk is embedded both in the game induced by the images of the nodes

in T1 and of those in T2. Let η1 and η2 the corresponding embeddings. Let η be the mapping from

the vertices of Hk+1 which extends in a natural way η1 and η2 and maps the vertex of priority 2k − 1

(resp. 2k) of Hk+1 to u (resp. v). It is easy to prove that with this construction, the definition of

structural tree and the induction hypothesis, η is an embedding.

6.0.3 The register index is bounded by the structural index

We prove here the third property.

Lemma 5. If the structural index of G is k then Even has a winning strategy in RkG.

Proof. Let F be a structural forest associated with G of structural number k. We are going to define

a winning strategy for Even in RkG. Let u be a play-winning vertex, we denote by κ(u) the maximum

of the Strahler numbers of the subtrees of F rooted in some s such that u ∈ αF (s) (in what follows,

we will drop the index F). Let us remind that we denote by π(u) the priority of u.

CHAPTER 6. UPPER BOUND OF REGISTER INDEX 21

The only vertices in which Even has to make a choice in RkG are those of the form (u, η, 0, 2), where

Even can decide which register is going to be reset. Let ρ(u, η, 0, 2) be a finite play in RkG. Let v be

the last play-winning vertex of G appearing in ρ such that κ(v) = κ(u) if it exists. The strategy is as

follows:

• If v is not a play-winning vertex or v does not exist then Even does not reset any register.

• If π(v) < π(u) then Even does not reset any register.

• If π(v) > π(u) then Even resets the register of rank κ(v).

Let us prove that this strategy is winning in RkG. Consider an infinite play ρ. First of all, Even

resets infinitely often in ρ since the sets of κ(u) and π(u) for vertices u are bounded. Let us denote by

t the highest rank of a register which is reset infinitely often. We can assume without loss of generality

(by going far enough in the play) that:

• no higher ranked register is reset,

• all the vertices u of G visited in ρ are such that κ(u) 6 t,

• all the vertices u of G is ρ such that κ(u) = t are visited infinitely often. Let us note u1, u2, . . .

for the sequence of those vertices.

Even resets the register of rank t whenever π(ui) > π(ui+1), and we are going to prove that in that

case, the valuation in the register of rank t is always even. Otherwise, necessarily there exists i < j,

such that π(ui) > π(uj) and there is a path from ui to uj for which the highest priority p is odd,

greater than max(π(ui), π(uj)). By definition of structural forest, since ui and uj are visited infinitely

often necessarily, in all trees containing nodes which are mapped with ui or uj , there are nodes s, t, z

and an index ` such that ui ∈ α(s), uj ∈ α(t) and u` ∈ α(z) and z is an ancestor of s and t, which are

not comparable. But then, κ(u`) would be greater than t.

6.1 Existence of a structural forest

In this section, we prove the first property, stating that there always exists a structural forest, con-

cluding the proof of Lemma 3. We construct such a structural forest using the notion of strategy

decomposition for parity games that we first recall in Section 6.1.1. We give the construction in

Section 6.1.2 and we apply this construction on an example in Section 6.1.3.

CHAPTER 6. UPPER BOUND OF REGISTER INDEX 22

Priority d

D 6= ∅

AttrEven

TG′

ω′

d even

G′ 6= ∅

ω′

AttrEven

TG′′

ω′′

Priority d

Odd×

d odd

Figure 6.1: Strategy decomposition for Even

6.1.1 Strategy decomposition

We define a strategy decomposition ω for Even of a parity game G by induction (a strategy decompo-

sition for Odd can be defined symmetrically). This is pictured in Figure 6.1.

1. If the highest priority d of G is even then ω =
(
(G′, ω′), T,D

)
, such that:

(a) D is the game induced by the vertices of priority d,

(b) T is the game induced by the vertices of the attractor of D for Even,

(c) G′ is the game induced by the remaining vertices and ω′ is a strategy decomposition of G′.

2. If d is odd then ω =
(
(G′′, ω′′), T, (G′, ω′)

)
, such that:

(a) G′′, T , G′ are induced games, partitioning the vertices of G,

(b) G′ is a non-empty trap for Odd,

(c) T is the attractor of G′ for Even,

(d) ω′ and ω′′ are strategy decompositions of G′ and G′′ respectively.

Proposition 3 ([7]). There is a strategy decomposition for Even of G if and only if Even wins from

every vertex in G.

6.1.2 Construction of a structural forest

We prove now that there exists a structural forest of G. We are going to construct it by induction.

For this, we need to strengthen the induction hypothesis and we introduce the notion of structural

expressions. Let A be the following algebra: the base elements are ordered trees and the operators, all

binary, are denoted by ⊕ and .b for all odd positive integers b no greater than the highest priority in G.

The operator ⊕ is associative and commutative. The operators .b are associative in the following strong

CHAPTER 6. UPPER BOUND OF REGISTER INDEX 23

sense: for all terms E1, E2, E3, and all odd integers b1, b2, we have (E1.b1E2).b2E3 = E1.b1 (E2.b2E3).

Finally, any .b distributes over ⊕, i.e. (E1 ⊕ E2) .b E3 = (E1 .b E3)⊕ (E2 .b E3) and symmetrically.

Terms in A are then either terms of the form T1 .b1 T2 .b2 · · · .bn−1 Tn for T1, . . . , Tn trees (possibly

n = 1) or terms of the form E1 ⊕ E2 for E1, E2 terms.

Definition 7. A structural expression associated with G is a term E in A such that:

• the set of trees in E is a structural forest F of G,

• if E contains a subexpression T1 .b T2, then for all nodes s ∈ T1 and t ∈ T2, and all vertices u of

α(s) and v of α(t), there is a path with highest priority b from u to v, and there is no path from

v to u.

The existence of a structural expression implies by definition the existence of a structural forest.

Construction of a structural expression of G. We define now by induction on a strategy de-

composition of G:

• a term φ(G) on A,

• a function αG mapping nodes in φ(G) with non-empty subsets of vertices of G.

and we prove that this is a structural expression.

The only base case is when the highest priority in G is even and G′ is empty in the strategy

decomposition of G. Then let S1, S2, . . . , St be the strongly connected components of G with at least

two vertices or one vertex and a self-loop, and Sd1 , S
d
2 , . . . , S

d
t their restriction to the vertices of priority

d. We define φ(G) = s1 ⊕ s2 ⊕ · · · ⊕ st where each of the si is a one node tree; and αG(si) = Sdi . It

can be checked that φ(G) is a structural expression.

Suppose now that the highest priority in G is odd and G′′ is empty in the strategy decomposition of

G. Then we define φ(G) = φ(G′) and αG = α(G′). Since none of the vertex in T can be play-winning,

and G′ is a trap, by induction φ(G) is a structural expression.

The third case is when G′′ is not empty. Then we define φ(G) = φ(G′′)#φ(G′) by induction on the

structure of φ(G′′) and φ(G′).

• If φ(G′′) = E1 ⊕ E2, then φ(G) = (E1#φ(G′)) ⊕ (E2#φ(G′)) and symmetrically if φ(G′) =

E1⊕E2. The function αG extends naturally αG′ and αG′′ . By induction, since the vertices in T

are not play-winning then φ(G) is a structural expression.

CHAPTER 6. UPPER BOUND OF REGISTER INDEX 24

• Otherwise, φ(G′′) = T1 .b1 T2 .b2 · · · .bn−1
Tn and φ(G′) = S1 .c1 S2 .c2 · · · .cm−1

Sm with the Ti’s

and Si’s being trees (possibly n or m = 1). Let I be the set of pairs of indices (i, j) such that

there are two nodes s in Ti and t in Tj and two vertices u ∈ αG′(s) and v ∈ αG′′(t) such that

there is a path in G from u to v visiting a vertex of priority d (the highest priority in the game),

then

φ(G) =

 ⊕
(i,j)∈I

T1 .b1 . . . Ti .d Sj .cjcm−1
Sm

⊕ φ(G′′)⊕ φ(G′)

The function αG extends naturally αG′ and αG′′ . It is easy to check by induction that φ(G) is a

structural expression.

Finally, the last case is when ω =
(
(G′, ω′), T,D

)
for some nonempty G′. Then let S1, S2, . . . , St

be the strongly connected components of T ∪D with at least two vertices or one vertex and a self-loop

and Sd1 , S
d
2 , . . . , S

d
t their restriction to the vertices of priority d. Then we define φ(G) = (φ(G′) ? v1)⊕

· · · ⊕ (φ(G′′) ? vt) where for all i, vi is a one node tree, by induction on the structure of φ(G′). For all

i,

• If φ(G′) = E1 ⊕ E2, then φ(G′) ? vi = (E1 ? vi) ⊕ (E2 ? vi). The function αG extends αG′ and

maps the copies of vi to Sdi .

• Otherwise, φ(G′) = T1 .b1 T2 .b2 · · · .bn−1
Tn with the Ti’s being trees (possibly n = 1). Let I

be the set of maximal intervals (`, j) such that there are two nodes s in T` and t in Tj and two

vertices u ∈ αG′(s) and v ∈ αG′′(t) such that there is a path in G from u to a vertex in Si and

from a vertex in Si to v, then

φ(G) =

 ⊕
(i,j)∈I

Ei,j

⊕ φ(G′)

where Ei,j is a tree with root vi and subtrees Ti, . . . , Tj . The function αG extends αG′ and maps

the copies of vi to Sdi . It is easily checked that φ(G) is a structural expression.

6.1.3 An example

We apply the construction given in the previous section to the parity games given in Figure 6.2.

The strategy decomposition of G is (where we dropped the ω and colored the nodes to simplify the

reading): ((H1 ∪H2, 7, H3), ∅, 8), where H3 can be further decomposed in ((4, 5, 4), ∅, 6) and H1 ∪H2

in ((H1 ∪ {4}, 5, 4), ∅, 6) where H1 is (((0, 1, 0), ∅, 2), ∅, 4).

CHAPTER 6. UPPER BOUND OF REGISTER INDEX 25

H1

H3

H2

4 4

8

4

7

4

6

5

5

6

1

0

4

2

0

Figure 6.2: Parity game with all vertices belonging to player Odd

The decomposition (0, 1, 0) is associated with the expression B1 . The decomposition ((0, 1, 0), ∅, 2)

corresponds then to the tree:

Going further, we get expressions associated with all the decompositions above:

H1: H3: H1 ∪ {4}: ⊕

Then (H1 ∪ {4}, 5, 4) and H1 ∪H2 corresponds to:

⊕

(
B5

)
and ⊕

Finally, the expression associated with G is:

⊕

Chapter 7

Conclusion

In this thesis, the two main results are as follows

• Give an alternating proof of correctness for the quasipolynomial time algorithm proposed in [16]

• Give a characterisation of graphs with a fixed register index k.

The proof of the characterisation also introduces new gadget associated parity game, a structural

expression and a structural forest, which is an interesting parameter in its own right and can be

studied further in detail to understand what it entails. One could take it upon themselves to define

a structural expression (and even a structural forest) for two player games in a meaningful way that

might contribute further to the understanding of the game.

Another interesting question is if it is possible to prove Theorem 4 without the digression to

structural expression and instead by-passing that.

An important thing to note, however is that this Theorem only considers a one player game. We

conjecture that the same results hold when there are two players, and that if at all a register game

can be won with a positional strategy, then there is a winning strategy.

The ultimate aim could be to understand register games completely and also to bring down the

complexity of the algorithm to solve parity games using register indices to the state of the art ones

for solving parity games. In [6], we see that there are some restriction on the lower-bounds that one

can achieve by this technique and we observe that there is a gap that can be closed for the algorithm

proposed in [16].

26

Bibliography

[1] D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer. Dag-width and parity games. In STACS,

pages 524–536, 2006.

[2] D. Berwanger and E. Grädel. Entanglement - A measure for the complexity of directed graphs

with applications to logic and games. In LPAR, pages 209–223, 2004.

[3] Henrik Björklund, Sven Sandberg, and Sergei Vorobyov. Memoryless determinacy of parity and

mean payoff games: A simple proof. THEORETICAL COMPUTER SCIENCE, 310:365–378,

2004.

[4] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity games in quasipoly-

nomial time. In STOC, pages 252–263, 2017.

[5] Thomas Colcombet and Nathanaël Fijalkow. Parity games and universal graphs. CoRR,

abs/1810.05106, 2018.

[6] Wojciech Czerwinski, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdzinski, Ranko Lazic, and

Pawel Parys. Universal trees grow inside separating automata: Quasi-polynomial lower bounds

for parity games. CoRR, abs/1807.10546, 2018.

[7] L. Daviaud, M. Jurdzinski, and R. Lazic. A pseudo-quasi-polynomial algorithm for solving mean-

payoff parity games. In LICS, pages 325–334, 2018.

[8] Laure Daviaud, Marcin Jurdzinski, and Ranko Lazic. A pseudo-quasi-polynomial algorithm for

solving mean-payoff parity games. CoRR, abs/1803.04756, 2018.

[9] E. A. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In FOCS, pages

368–377, 1991.

27

BIBLIOGRAPHY 28

[10] E. A. Emerson, C. Jutla, and A. P. Sistla. On model-checking for fragments of µ-calculus. Theo-

retical Computer Science, 258(1–2):491–522, 2001.

[11] P. Hunter and S. Kreutzer. Digraph measures: Kelly decompositions, games, and orderings. In

SODA, pages 637–644, 2007.

[12] M. Jurdziński and R. Lazić. Succinct progress measures for solving parity games. In LICS, pages

1–9, 2017.

[13] Marcin Jurdzinski. Small progress measures for solving parity games. volume 1770, pages 290–301,

08 2007.

[14] Marcin Jurdzinski and Ranko Lazic. Succinct progress measures for solving parity games. CoRR,

abs/1702.05051, 2017.

[15] K. Lehtinen. A modal µ perspective on solving parity games in quasi-polynomial time. In LICS,

pages 639–648, 2018.

[16] Karoliina Lehtinen. A modal µ perspective on solving parity games in quasi-polynomial time. In

Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’18,

pages 639–648, New York, NY, USA, 2018. ACM.

[17] R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied Logic,

65(2):149–184, 1993.

[18] J. Obdrzálek. Fast mu-calculus model checking when tree-width is bounded. In CAV, pages 80–92,

2003.

[19] J. Obdrzálek. Clique-width and parity games. In CSL, pages 54–68, 2007.

[20] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite

trees. Theoretical Computer Science, 200:135–183, 1998.

Appendix A

Proof of Upper bound of register

index

We will see this proof step by step.

Description of strategy: We will first give a strategy for the register game RkG, where k > Str(T)

and argue that this strategy is winning for player Even. Given that we already know that the parity

game G has a progress measure associated with it and that progress measure in turn guarantees a

positional strategy for the underlying parity game, we will fix such a positional strategy and call it σ.

We know that any play which obeys σ will only involve progressive edges. i.e, while moving the token

along the vertices, Even follows the positional strategy σ, such that on moving from a vertex u to v,

the edge (u, v) is progressive.

Now to define a strategy σ′ for the register game RkG. Notice that a strategy for Even can be

thought of, as having two parts. One which tells the player which edge to take to given the current

register values. The other component tells if a register must be reset, and if so which one. The strategy

σ′ that we define here, does not take into account the value of the register at all and if restricted to

We say that Even plays the game such that even has to move to another vertex, she follows σ. For

resetting the register, Even does the following: If during the play an edge u → v is taken such that

µ(u) 6 µ(v), then in the turn to reset right after taking this edge, irrespective of the contents of

the register, Even resets the kth register where k is one more than the Strahler number of the least

common ancestor in T , of the nodes µ(u) and µ(v).

Note that if µ(u) 6 µ(v) and the edge is progressive, it must be the case that π(u) is even. With

this observation in hand, we will show the following inducting on the height of the tree associated with

29

APPENDIX A. PROOF OF UPPER BOUND OF REGISTER INDEX 30

the progress measure in two different cases. When the strahler index is 1 and if it is > 1.

Induction Hypothesis: Suppose height of the tree T is h,

(a) For Strahler number k and if the kth register contains an even value in it, greater than or equal

to 2h, then for any play, on following the strategy σ′, player Even would only reset the register

when the register of rank k contains an even number.

(b) Any play following the strategy σ′ in the register game RkG is winning

Strahler index of the tree is 1

For each of these, we will proceed by induction on the height of the tree corresponding to the progress

measure of the game. We will slightly strengthen the induction hypothesis. Other than the two

conditions (a) and (b), we will also add the following for the case:

(c) For trees with Strahler index 1, if the only register contains an even value in it, or if it contains

any value less then 2h, then a play following σ′ would always output an even number on resetting

that register.

Let us prove the above statement for games G with Strahler index 1. If Strahler index of the graph is

1, then the tree T associated with the progress measure must look like a path.

We will proceed by induction on the height of the tree T . Note that the height of the tree would

be 2.d where d is the highest priority in the game, which we will assume to be even, without loss of

generality.

Base Case: If the height of the tree is 0, then we know that the only priorities seen is 0. This ensures

that the strategy σ′ so defined, resets the register which sees 0 at every step. This clearly satisfies

both (a) and (b) of the statement. Induction step: Now assume the height of the tree is h. Also,

the induction hypothesis holds for plays where the height of the tree (of Strahler index 1) is strictly

smaller than h, the conditions (a), (b) and (c) are satisfied. We will show that the statement is true for

h also. Suppose we have a play satisfying σ′, we know that if the play was such that its corresponding

values on the tree T (Or the projection of the play on T) only visited the root of the tree, i.e, all the

edges (u, v) taken are such that µ(u) and µ(v) correspond to the root of T , then we know that the

priority π(u) must be even, since the edge is progressive and also that µ(u) = µ(v). This also means

that from our definition of σ′, the register is reset every time after visiting u and proceeds to v.

Suppose the play does not stay on the root T and remains completely within the subtree of T ,

without reaching the root infinitely often, then by induction hypothesis, this play would satisfy (a),

(b) and (c). If the play visits T , then we consider the position where the play reaches the root of the

APPENDIX A. PROOF OF UPPER BOUND OF REGISTER INDEX 31

tree T , from which it proceeds to visit other nodes of T , we again note that if there is an edge between

u and v such that µ(u) 6 µ(v) and when (u, v) is progressive, then it must be the case that again such

an edge has priority even, and since we know that π(u) is at least twice the height of the node µ(u)

in the tree, we can again see that the strategy σ′ would always reset the register after such an edge

(u, v). If the register already contained an even number or a value smaller than 2.h, then σ′ on taking

the edge (u, v) would definitely contain an even number at least as large as 2.h.

Since σ′ is such that Even resets the register only after seeing an edge (u, v) such that µ(u) 6 µ(v)

and also from the fact that (u, v) is progressive, Even would reset only when µ(u) = µ(v) or µ(v) is

a child of µ(u). It is easy to see that if we have µ(u) 6 µ(v) for a progressive edge it must be the

case that π(u) is even and again, if the register already has index that is even or less than 2.h, then

σ′ would only output even values at that point on resetting the register, and once the game proceeds

to the lower parts of the tree, the register is reset, so it has a value lower than the height of the tree

and therefore, by induction, we arrive at play on a tree T of strictly smaller height. Now as long as

the play remain within T , by induction hypothesis, we know the statements (a), (b) and (c) hold. If

the play reaches the root, we know that the reset only outputs an even number. Therefore, we have

shown the induction hypothesis.

Strahler index of tree is > 1

Now we proceed to the case where the Strahler index is at least two, and we will prove the following

similarly by induction on the height of the tree with Strahler index T and making (a) and (b) as our

statement of the induction hypothesis. In the proof, we will always assume without loss of generality

that the maximum priority d is even.

Suppose, for some d such that d > 2, if all the priorities occurring in a play following σ′ in the

game graph G are bounded by d, then we have that the register game RkG is winning for player Even

on that play. Other than that, if the configuration of the registers at the beginning of the play is such

that the register with rank equal to the Strahler index contains d or a higher even priority, resetting

that register always outputs an even value.

We will show that the induction hypothesis holds while following the strategy σ′

Base case: h=1

Suppose h = 1, then the ordered tree T would have a root as a node and all other nodes of T would

be children of T .

The Strahler number of T here is 2 if the tree has more than one child. We need to show that

the above strategy σ′ which would use two registers is winning for Even from all vertices. But that

APPENDIX A. PROOF OF UPPER BOUND OF REGISTER INDEX 32

is because the only time we reset registers is when we have an edge such that the µ(u) is the root

and µ(v) is its child. Those edges occur only after we see edges of priority 2. This must mean that

the register that is being reset would also contain at least 2, which is an even number, and therefore

the register would output an even number. We can also guarantee that since we are always taking

progressive edges, the register would be reset infinitely often as the progress measure of vertices in a

play cannot always continue to increase. Suppose the register contained an even number, then we can

also see that on following σ′, resetting the register always outputs an even value.

Induction step

Now, we will assume the hypothesis for d > 2 and prove it for a play on G where the highest priority

is d + 2. Let T be the ordered tree associated with the progress measure on G. T looks like (inset

picture) where T1, T2, . . . Tl are the sub-trees whose corresponding Strahler numbers are k1, k2, . . . , kl.

Case I: Strahler number of T is equal Straher number of max{k1, . . . , kl} Consider a play denoted by

v0, v1, . . . , vi, Look at the projection of this play to nodes of tree T , i.e, µ(v0), µ(v1), . . . , µ(vi),

If this sequence completely stays inside the sub trees Ti, then we know that all the priorities seen

by in this play would be at most d, and therefore, by induction, we know that the play is winning

for Even and also that every time the register of highest rank is reset, it outputs an even number.

If not, we know that the play reaches nodes where u, where µ(u) is the root of the tree T after

which the projection of the play either stays at the root or it enters a sub-tree Tj If the play

stays at µ(u), then a simple argument will show that the edge taken to do so always has priority

d + 2 and the register is reset after each time the edge is taken and therefore our induction

hypothesis holds as resetting the register of rank k outputs an even value. If not, then the edge

(u, v) taken is such that µ(u) is the root of the tree T and v is such that µ(v) is an element in

Tj . Since such an edge can be taken only if µ(u) 6 µ(v) and this edge is progressive, so we also

have µ(u) |π(u)> µ(v) |π(u). This must mean that π(u) is even and from the position of µ(u) in

T , we know that π(u) > d + 2. This ensures that on entering the sub tree Tj below, we would

have reset the register of rank k, which would have had an even value at least as large as d+ 2.

So, when the register of rank k is reset, it would produce only an even number. On entering the

sub-tree Tj , the value of each register with rank greater than 1 (We assumed that there are at

least 2 registers) is an even value at least as large as d+ 2 too. While the game is restricted to

the sub-trees, the largest rank register never outputs an odd value when reset, as there is exactly

one sub-tree of Strahler index the same as the root and no other subtree would reset the register

of the highest rank within this subtree. This ensures, that by induction hypothesis and the fact

APPENDIX A. PROOF OF UPPER BOUND OF REGISTER INDEX 33

that there is a unique sub-tree with Strahler number k that if the play thereon does not visit

the node of T would output an even number of resetting the register of the highest rank. Since,

while visiting the root at T , we have seen that the edge taken while leaving the root has priority

d+ 2, and therefore resetting the register there, we see an even value as output.

Case II: Strahler number of T is one more than the Straher number of max{k1, . . . , kl} This is a

simpler case, as we know that if the root of the tree is never visited at all, then the priorities seen

by a play would not contain d+ 1 and d+ 2 and none of the sub-trees would reset the register of

index k. Otherwise, then we know that the only time the register of index equal to the Strahler

number is reset, is when an edge (u, v) where µ(u) corresponds to the root of the tree T is taken.

We have already seen that such a vertex u must have priority π(u) = d+2. This makes sure that

on following strategy σ′, where after taking the edge (u, v) the kth register is reset, all the other

registers would have an even priority which is at least as large as d + 2. Again, we have shown

the statement that the largest register outputs an even value only. To show that Even wins the

game is easy, since this follows by induction hypothesis. Since while entering each sub-tree, the

registers with the Strahler number have even values in them, and by induction hypothesis we

have that any play following σ′ must be winning for Even

